23 resultados para Resolvent Operator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce the block numerical range Wn(L) of an operator function L with respect to a decomposition H = H1⊕. . .⊕Hn of the underlying Hilbert space. Our main results include the spectral inclusion property and estimates of the norm of the resolvent for analytic L . They generalise, and improve, the corresponding results for the numerical range (which is the case n = 1) since the block numerical range is contained in, and may be much smaller than, the usual numerical range. We show that refinements of the decomposition entail inclusions between the corresponding block numerical ranges and that the block numerical range of the operator matrix function L contains those of its principal subminors. For the special case of operator polynomials, we investigate the boundedness of Wn(L) and we prove a Perron-Frobenius type result for the block numerical radius of monic operator polynomials with coefficients that are positive in Hilbert lattice sense.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the operator variability of different finishing and polishing techniques. After placing 120 composite restorations (Tetric EvoCeram) in plexiglassmolds, the surface of the specimens was roughened in a standardized manner. Twelve operators with different experience levels polished the specimens using the following finishing/polishing procedures: method 1 (40 ?m diamond [40D], 15 ?m diamond [15D], 42 ?m silicon carbide polisher [42S], 6 ?m silicon carbide polisher [6S] and Occlubrush [O]); method 2 (40D, 42S, 6S and O); method 3 (40D, 42S, 6S and PoGo); method 4 (40D, 42S and PoGo) and method 5 (40D, 42S and O). The mean surface roughness (Ra) was measured with a profilometer. Differences between the methods were analyzed with non-parametric ANOVA and pairwise Wilcoxon signed rank tests (?=0.05). All the restorations were qualitatively assessed using SEM. Methods 3 and 4 showed the best polishing results and method 5 demonstrated the poorest. Method 5 was also most dependent on the skills of the operator. Except for method 5, all of the tested procedures reached a clinically acceptable surface polish of Ra?0.2 ?m. Polishing procedures can be simplified without increasing variability between operators and without jeopardizing polishing results.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the set of O(\alpha_s) corrections to the double differential decay width d\Gamma_{77}/(ds_1 \, ds_2) for the process \bar{B} \to X_s \gamma \gamma originating from diagrams involving the electromagnetic dipole operator O_7. The kinematical variables s_1 and s_2 are defined as s_i=(p_b - q_i)^2/m_b^2, where p_b, q_1, q_2 are the momenta of b-quark and two photons. While the (renormalized) virtual corrections are worked out exactly for a certain range of s_1 and s_2, we retain in the gluon bremsstrahlung process only the leading power w.r.t. the (normalized) hadronic mass s_3=(p_b-q_1-q_2)^2/m_b^2 in the underlying triple differential decay width d\Gamma_{77}/(ds_1 ds_2 ds_3). The double differential decay width, based on this approximation, is free of infrared- and collinear singularities when combining virtual- and bremsstrahlung corrections. The corresponding results are obtained analytically. When retaining all powers in s_3, the sum of virtual- and bremstrahlung corrections contains uncanceled 1/\epsilon singularities (which are due to collinear photon emission from the s-quark) and other concepts, which go beyond perturbation theory, like parton fragmentation functions of a quark or a gluon into a photon, are needed which is beyond the scope of our paper.