92 resultados para Repetitive transcranial magnetic stimulation
Resumo:
Transcranial magnetic stimulation has evolved into a powerful neuroscientific tool allowing to interfere transiently with specific brain functions. In addition, repetitive TMS (rTMS) has long-term effects (e.g. on mood), probably mediated by neurochemical alterations. While long-term safety of rTMS with regard to cognitive functioning is well established from trials exploring its therapeutic efficacy, little is known on whether rTMS can induce changes in cognitive functioning in a time window ranging from minutes to hours, a time in which neurochemical effects correlated with stimulation have been demonstrated. This study examined effects of rTMS on three measures of executive function in healthy subjects who received one single rTMS session (40 trains of 2 s duration 20 Hz stimuli) at the left dorsolateral prefrontal cortex (DLPFC). Compared to a sham condition one week apart, divided attention performance was significantly impaired about 30-60 min after rTMS, while Stroop-interference and performance in the Wisconsin Card Sorting Test was unaffected after rTMS. Repetitive TMS of the left DLPFC, at stimulation parameters used in therapeutic studies, does not lead to a clinically relevant impairment of executive function after stimulation. However, the significant effect on divided attention suggests that cognitive effects of rTMS are not limited to the of acute stimulation, and may possibly reflect known neurochemical alterations induced by rTMS. Sensitive cognitive measures may be useful to trace those short-term effects of rTMS non-invasively in humans.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a recent putative treatment for affective disorders. Several studies have demonstrated antidepressant effects of rTMS in younger patients; we aimed to assess its effect in older outpatients with treatment-resistant major depression. Twenty-four outpatients (mean age=62 years, S.D.=12) with major depression were randomized for sham or real stimulation and received 10 daily rTMS sessions (20 Hz, 2-s trains, 28-s intertrain intervals, 100% of motor threshold) in addition to the antidepressant medication. For sham stimulation, the coil was tilted 90 degrees. Depression severity was assessed using the Hamilton Depression Rating Scale, the Beck Depression Inventory, items from the NIMH self-rated symptom scale, and a visual analog depression scale. Mini-Mental Status Examination performance, memory, and executive and attentional functions were measured to control for cognitive side effects. Depression ratings revealed significant antidepressant effects within 2 weeks in both sham and real stimulation groups; however, there were no between-group differences. Treatment with rTMS was safe; adverse events were rare and not more prevalent in either group, and cognitive assessment did not show any deterioration. We were unable to demonstrate any additional antidepressant effects of real stimulation in elderly patients with treatment-resistant major depression. Therapeutic effects of rTMS in this clinically challenging patient group remain to be demonstrated.
Resumo:
Repetitive transcranial magnetic stimulation (rTMS) is a novel research tool in neurology and psychiatry. It is currently being evaluated as a conceivable alternative to electroconvulsive therapy for the treatment of mood disorders. Eight healthy young (age range 21-25 years) right-handed men without sleep complaints participated in the study. Two sessions at a 1-week interval, each consisting of an adaptation night (sham stimulation) and an experimental night (rTMS in the left dorsolateral prefrontal cortex or sham stimulation; crossover design), were scheduled. In each subject, 40 trains of 2-s duration of rTMS (inter-train interval 28 s) were applied at a frequency of 20 Hz (i.e. 1600 pulses per session) and at an intensity of 90% of the motor threshold. Stimulations were scheduled 80 min before lights off. The waking EEG was recorded for 10-min intervals approximately 30 min prior to and after the 20-min stimulations, and polysomnographic recordings were obtained during the subsequent sleep episode (23.00-07.00 h). The power spectra of two referential derivations, as well as of bipolar derivations along the antero-posterior axis over the left and right hemispheres, were analyzed. rTMS induced a small reduction of sleep stage 1 (in min and percentage of total sleep time) over the whole night and a small enhancement of sleep stage 4 during the first non-REM sleep episode. Other sleep variables were not affected. rTMS of the left dorsolateral cortex did not alter the topography of EEG power spectra in waking following stimulation, in the all-night sleep EEG, or during the first non-REM sleep episode. Our results indicate that a single session of rTMS using parameters like those used in depression treatment protocols has no detectable side effects with respect to sleep in young healthy males.
Resumo:
This study investigated the effect of high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) of the left prefrontal cortex (LPFC) on mood in a sham-controlled crossover design. Twenty-five healthy male subjects received HF-rTMS of the LPFC in real and sham conditions. Forty trains (frequency 20 Hz, stimulation intensity 100% of individual motor threshold, train duration 2 s, intertrain interval 28 s) were applied in each session. Mood change from baseline was measured with five visual analog scales (VAS) for sadness, anxiety, happiness, tiredness and pain/discomfort. We were unable to demonstrate significant mood changes from baseline on visual analog scales after either sham or real stimulation of LPFC. There is insufficient evidence to support the general conclusion that HF-rTMS of LPFC has mood effects in healthy volunteers. Future studies should be sham-controlled, have larger sample sizes, and strictly stimulate one single region per session in order to exclude interaction effects with the previous stimulation.
Resumo:
Decisions require careful weighing of the risks and benefits associated with a choice. Some people need to be offered large rewards to balance even minimal risks, whereas others take great risks in the hope for an only minimal benefit. We show here that risk-taking is a modifiable behavior that depends on right hemisphere prefrontal activity. We used low-frequency, repetitive transcranial magnetic stimulation to transiently disrupt left or right dorsolateral prefrontal cortex (DLPFC) function before applying a well known gambling paradigm that provides a measure of decision-making under risk. Individuals displayed significantly riskier decision-making after disruption of the right, but not the left, DLPFC. Our findings suggest that the right DLPFC plays a crucial role in the suppression of superficially seductive options. This confirms the asymmetric role of the prefrontal cortex in decision-making and reveals that this fundamental human capacity can be manipulated in normal subjects through cortical stimulation. The ability to modify risk-taking behavior may be translated into therapeutic interventions for disorders such as drug abuse or pathological gambling.
Resumo:
Auditory hallucinations comprise a critical domain of psychopathology in schizophrenia. Repetitive transcranial magnetic stimulation (TMS) has shown promise as an intervention with both positive and negative reports. The aim of this study was to test resting-brain perfusion before treatment as a possible biological marker of response to repetitive TMS. Twenty-four medicated patients underwent resting-brain perfusion magnetic resonance imaging with arterial spin labeling (ASL) before 10 days of repetitive TMS treatment. Response was defined as a reduction in the hallucination change scale of at least 50%. Responders (n=9) were robustly differentiated from nonresponders (n=15) to repetitive TMS by the higher regional cerebral blood flow (CBF) in the left superior temporal gyrus (STG) (P<0.05, corrected) before treatment. Resting-brain perfusion in the left STG predicted the response to repetitive TMS in this study sample, suggesting this parameter as a possible bio-marker of response in patients with schizophrenia and auditory hallucinations. Being noninvasive and relatively easy to use, resting perfusion measurement before treatment might be a clinically relevant way to identify possible responders and nonresponders to repetitive TMS.
Resumo:
The aim of the study was to examine the effect of low-frequency repetitive transcranial magnetic stimulation on saccade triggering. In five participants, a train of 600 pulses with a frequency of 1 Hz was applied over the right frontal eye field and--as control condition--over the vertex. After repetitive transcranial magnetic stimulation application, oculomotor performance was evaluated with an overlap paradigm. The results show that the repetitive transcranial magnetic stimulation effect was specific for frontal eye field stimulation. Saccade latencies were found to be increased bilaterally for several minutes after the stimulation, and the time course of recovery was different for the ipsilateral and contralateral sides. The results are discussed in the light of possible local and remote repetitive transcranial magnetic stimulation effects on the oculomotor network.
Resumo:
The aim of the current study was to examine the effect of theta burst repetitive transcranial magnetic stimulation (rTMS) on the blood oxygenation level-dependent (BOLD) activation during repeated functional magnetic resonance imaging (fMRI) measurements. Theta burst rTMS was applied over the right frontal eye field in seven healthy subjects. Subsequently, repeated fMRI measurements were performed during a saccade-fixation task (block design) 5, 20, 35, and 60 min after stimulation. We found that theta burst rTMS induced a strong and long-lasting decrease of the BOLD signal response of the stimulated frontal eye field at 20 and 35 min. Furthermore, less pronounced alterations of the BOLD signal response with different dynamics were found for remote oculomotor areas such as the left frontal eye field, the pre-supplementary eye field, the supplementary eye field, and both parietal eye fields. Recovery of the BOLD signal changes in the anterior remote areas started earlier than in the posterior remote areas. These results show that a) the major inhibitory impact of theta burst rTMS occurs directly in the stimulated area itself, and that b) a lower effect on remote, oculomotor areas can be induced.
Resumo:
The right posterior parietal cortex (PPC) is critically involved in visual exploration behaviour, and damage to this area may lead to neglect of the left hemispace. We investigated whether neglect-like visual exploration behaviour could be induced in healthy subjects using theta burst repetitive transcranial magnetic stimulation (rTMS). To this end, one continuous train of theta burst rTMS was applied over the right PPC in 12 healthy subjects prior to a visual exploration task where colour photographs of real-life scenes were presented on a computer screen. In a control experiment, stimulation was also applied over the vertex. Eye movements were measured, and the distribution of visual fixations in the left and right halves of the screen was analysed. In comparison to the performance of 28 control subjects without stimulation, theta burst rTMS over the right PPC, but not the vertex, significantly decreased cumulative fixation duration in the left screen-half and significantly increased cumulative fixation duration in the right screen-half for a time period of 30 min. These results suggest that theta burst rTMS is a reliable method of inducing transient neglect-like visual exploration behaviour.
Resumo:
One Hertz (1 Hz) repetitive transcranial magnetic stimulation (rTMS) is an effective therapy for auditory verbal hallucinations (AVH). Theta burst protocols (TBS) show longer after-effects. This single-blind, randomized controlled study compared continuous TBS with 1Hz rTMS in a 10-day treatment. Patients were diagnosed with schizophrenia or schizoaffective disorder. TBS demonstrated equal clinical effects compared to 1Hz TMS.
Resumo:
When subjects are required to generate a random sequence of numbers they typically produce too many forward and backward 'counts' (e.g. 5-6, 4-3). This counting bias is interpreted as the consequence of an interference by overlearned tendencies to arrange numbers according to their natural order. Inhibition of such well-learned routines is known to rely on frontal lobe functioning. We examined differential effects of slow (1 Hz) and fast (10 Hz) repetitive transcranial magnetic stimulation (rTMS) over the left or right dorsolateral prefrontal cortex (DLPFC) on random number generation (RNG) performance. Eighteen healthy men performed an RNG task. Those subjects stimulated over the left DLPFC showed a frequency-dependent rTMS effect: counting bias was significantly reduced after the 1 Hz stimulation compared with baseline, but significantly exaggerated after the 10 Hz stimulation compared with 1 Hz stimulation. In contrast, the sequences of the subjects stimulated over the right DLPFC showed the well-known excess of counting in all conditions (i.e. baseline, 1 Hz and 10 Hz). These findings confirm the functional importance of specifically the left DLPFC in sequential response production and show, for the first time, that rTMS affects cognitive processing in a frequency-dependent manner.
Resumo:
In the present multi-modal study we aimed to investigate the role of visual exploration in relation to the neuronal activity and performance during visuospatial processing. To this end, event related functional magnetic resonance imaging er-fMRI was combined with simultaneous eye tracking recording and transcranial magnetic stimulation (TMS). Two groups of twenty healthy subjects each performed an angle discrimination task with different levels of difficulty during er-fMRI. The number of fixations as a measure of visual exploration effort was chosen to predict blood oxygen level-dependent (BOLD) signal changes using the general linear model (GLM). Without TMS, a positive linear relationship between the visual exploration effort and the BOLD signal was found in a bilateral fronto-parietal cortical network, indicating that these regions reflect the increased number of fixations and the higher brain activity due to higher task demands. Furthermore, the relationship found between the number of fixations and the performance demonstrates the relevance of visual exploration for visuospatial task solving. In the TMS group, offline theta bursts TMS (TBS) was applied over the right posterior parietal cortex (PPC) before the fMRI experiment started. Compared to controls, TBS led to a reduced correlation between visual exploration and BOLD signal change in regions of the fronto-parietal network of the right hemisphere, indicating a disruption of the network. In contrast, an increased correlation was found in regions of the left hemisphere, suggesting an intent to compensate functionality of the disturbed areas. TBS led to fewer fixations and faster response time while keeping accuracy at the same level, indicating that subjects explored more than actually needed.
Resumo:
BACKGROUND: The aetiology of visual hallucinations is poorly understood in dementia with Lewy bodies. Pathological alterations in visual cortical excitability may be one contributory mechanism. AIMS: To determine visual cortical excitability in people with dementia with Lewy bodies compared with aged-matched controls and also the relationship between visual cortical excitability and visual hallucinations in dementia with Lewy bodies. METHOD: Visual cortical excitability was determined by using transcranial magnetic stimulation (TMS) applied to the occiput to elicit phosphenes (transient subjective visual responses) in 21 patients with dementia with Lewy bodies and 19 age-matched controls. RESULTS: Phosphene parameters were similar between both groups. However, in the patients with dementia with Lewy bodies, TMS measures of visual cortical excitability correlated strongly with the severity of visual hallucinations (P = 0.005). Six patients with dementia with Lewy bodies experienced visual hallucination-like phosphenes (for example, seeing people or figures on stimulation) compared with none of the controls (P = 0.02). CONCLUSIONS: Increased visual cortical excitability in dementia with Lewy bodies does not appear to explain visual hallucinations but it may be a marker for their severity.