51 resultados para Redox titration


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Benzodifuran-functionalised pyrene and anthracene fluorophores 1 and 2 were obtained in reasonable yields. Their single crystal structures, electrochemical, optical absorption, and fluorescence characteristics have been described. They show strong luminescence with high quantum yields of 0.53 for 1 and 0.48 for 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reported the first application of in situ shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) to an interfacial redox reaction under electrochemical conditions. We construct gap-mode sandwich structures composed of a thiol-terminated HS-6V6H viologen adlayer immobilized on a single crystal Au(111)-(1x1) electrode and covered by Au(60 nm)@SlO(2) core shell nanoparticles acting as plasmonic antennas. We observed high-quality, potential-dependent Raman spectra of the three viologen species V(2+),V(+center dot) and V(0) on a well-defined Au(111) substrate surface and could map their potential-dependent evolution. Comparison with experiments on powder samples revealed an enhancement factor of the nonresonant Raman modes of similar to 3 x 10(5), and up to 9 x 10(7) for the resonance modes. The study illustrates the unique capability of SHINERS and its potential in the entire field of electrochemical surface science to explore structures and reaction pathways on well-defined substrate surfaces, such as single crystals, for molecular, (electro-)- catalytic, bioelectrochemical systems up to fundamental double layer studies at electrified solid/liquid interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated structural aspects of electron transfer (ET) in tunneling junctions (Au(1 1 1)vertical bar FcN vertical bar solution gap vertical bar Au STM tip) with four different redox-active N-thioalk(ano)ylferrocenes (FcN) embedded. The investigated molecules consist of a redox-active ferrocene (Fc) moiety connected via alkyl spacers with N = 4, 6, 8 and 11 carbon atoms to a thiol anchoring group. We found that for short FcNs (N = 4, 6,8) the redox-mediated ET response increases with the increase of the alkyl chain length, while no enhancement of the ET was observed for Fc1 1. The model of two-step ET with partial vibrational relaxation by Kuznetsov and Ulstrup was used to rationalize these results. The theoretical ET steps were assigned to two processes: (1) electron tunneling from the Fc group to the Au tip through the electrolyte layer and (2) electron transport from the Au(1 1 1) substrate to the Fc group through the organic adlayer. We argue that for the three short FcNs, the first process represents the rate-limiting step. The increase of the length of the alkyl chain leads to an approach of the Fc group to the STM tip, and consequently accelerates the first El' step. In case of the Fcl 1 junctions the rather high thickness of the organic layer leads to a decrease of the rate of the second ET step. In consequence, the contribution of the redox-mediated current enhancement to the total tunneling current appears to be insignificant. Our work demonstrates the importance of combined structural and transport approaches for the understanding of Er processes in electrochemical nanosystems. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The explorative coordination chemistry of the bridging ligand TTF-PPB is presented. Its strong binding ability to Co(II) and then to Ni(II) or Cu(II) in the presence of hexafluoroacetylacetonate (hfac(-)), forming new mono-and dinuclear complexes 1-3, is described. X-ray crystallographic studies have been conducted in the case of the free ligand TTF-PPB as well as its complexes [Co(TTF-PPB)(hfac)(2)] (1) and [Co(hfac)(2)(mu-TTF-PPB)Ni(hfac)(2)] (2). Each metal ion is bonded to two bidentate hfac-anions through their oxygen atoms and two nitrogen atoms of the PPB moiety with a distorted octahedral coordination geometry. Specifically, nitrogen donor atoms of TTF-PPB adopt a cis-coordination but not in the equatorial plane, which is quite rare. Electronic absorption, photoinduced intraligand charge transfer ((1)ILCT), and electrochemical behaviour of 1-3 have been investigated. UV-Vis spectroscopy shows very strong bands in the UV region consistent with ligand centred pi-pi* transitions and an intense broad band in the visible region corresponding to a spin-allowed pi-pi* (1)ILCT transition. Upon coordination, the (1)ILCT band is bathochromically shifted by 3100, 6100 and 5900 cm(-1) on going from 1 to 3. The electrochemical studies reveal that all of them undergo two reversible oxidation and one reversible reduction processes, ascribed to the successive oxidations of the TTF moiety and the reduction of the PPB unit, respectively.