54 resultados para Recombinant Protein


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The in vitro production of recombinant protein molecules has fostered a tremendous interest in their clinical application for treatment and support of cancer patients. Therapeutic proteins include monoclonal antibodies, interferons, and haematopoietic growth factors. Clinically established monoclonal antibodies include rituximab (targeting CD20-positive B-cell lymphomas), trastuzumab (active in HER-2 breast and gastric cancer), and bevacizumab (blocking tumor-induced angiogenesis through blockade of vascular-endothelial growth factor and its receptor). Interferons have lost much of their initial appeal, since equally or more effective treatments with more pleasant side effects have become available, for example in chronic myelogenous leukaemia or hairy cell leukaemia. The value of recombinant growth factors, notably granulocyte colony stimulating factor (G-CSF) and erythropoietin is rather in the field of supportive care than in targeted anti-cancer therapy. Adequately powered clinical phase III trials are essential to estimate the true therapeutic impact of these expensive compounds, with appropriate selection of clinically relevant endpoints and sufficient follow-up. Monoclonal antibodies, interferons, and growth factors must also, and increasingly so, be subjected to close scrutiny by appropriate cost-effectiveness analyses to ensure that their use results in good value for money. With these caveats and under the condition of their judicious clinical use, recombinant proteins have greatly enriched the therapeutic armamentarium in clinical oncology, and their importance is likely to grow even further.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

NcMIC4 is a Neospora caninum microneme protein that has been isolated and purified on the basis of its unique lactose-binding properties. We have shown that this protein binds to galactosyl residues of lactose; antibodies directed against NcMIC4 inhibit host cell interactions in vitro, thus making it a vaccine candidate. Because of this feature, NcMIC4 was first purified on a larger scale in its native, functionally active form using lactose-agarose affinity chromatography. Second, NcMIC4 was expressed in Escherichia coli as a histidine-tagged recombinant protein (recNcMIC4) and purified through Ni-affinity chromatography. Third, NcMIC4 cDNA was cloned into the mammalian pcDNA3.1 DNA vector and expression was confirmed upon transfection of Vero cells in vitro. For vaccination studies, we employed the murine cerebral infection model based on C57Bl/6 mice, employing experimental groups of 10 mice each. Two groups were injected intraperitoneally with purified native NcMIC4 and recNcMIC4, respectively, employing RIBI adjuvant. The third group was vaccinated intramuscularly with pcDNA-NcMIC4. Control groups included an infection control, an adjuvant control, and a pcDNA3.1 control group. Following 3 injections at 4-wk intervals, mice were challenged by i.p. inoculation of 2 x 10(6) N. caninum tachyzoites (Nc-1 isolate). During the course of parasite challenge (3 wk), mice from the 3 different test groups showed varying degrees of symptoms bearing a semblance to neosporosis, i.e., walking disorder, rounded back, apathy, and paralysis of the hind limbs. Control groups showed no symptoms at all. Most notably, vaccination with pcDNA-MIC4 proved antiprotective, with 60% of mice succumbing to infection within 3 wk, and all mice lacking a measurable anti-NcMIC4 IgG response. NcMIC4 in its native form elicited a substantial humoral IgG1 immune response and a reduction in cerebral parasite load compared to the controls, but 20% of mice succumbed to infection. Vaccination with recNcMIC4 also resulted in 20% of mice dying; however, in this group, cerebral parasite load was similar to the controls, and recNcMIC4 vaccination elicited a mixed IgG1/IgG2 response. In conclusion, vaccines based on NcMIC4, especially pcDNA-NcMIC4, render mice more susceptible to cerebral disease upon challenge with N. caninum tachyzoites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural analyses of heterologously expressed mammalian membrane proteins remain a great challenge given that microgram to milligram amounts of correctly folded and highly purified proteins are required. Here, we present a novel method for the expression and affinity purification of recombinant mammalian and in particular human transport proteins in Xenopus laevis frog oocytes. The method was validated for four human and one murine transporter. Negative stain transmission electron microscopy (TEM) and single particle analysis (SPA) of two of these transporters, i.e., the potassium-chloride cotransporter 4 (KCC4) and the aquaporin-1 (AQP1) water channel, revealed the expected quaternary structures within homogeneous preparations, and thus correct protein folding and assembly. This is the first time a cation-chloride cotransporter (SLC12) family member is isolated, and its shape, dimensions, low-resolution structure and oligomeric state determined by TEM, i.e., by a direct method. Finally, we were able to grow 2D crystals of human AQP1. The ability of AQP1 to crystallize was a strong indicator for the structural integrity of the purified recombinant protein. This approach will open the way for the structure determination of many human membrane transporters taking full advantage of the Xenopus laevis oocyte expression system that generally yields robust functional expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nitrothiazole analogue nitazoxanide [NTZ; 2-acetolyloxy-N-(5-nitro-2-thiazolyl)benzamide] represents the parent compound of a class of drugs referred to as thiazolides and exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. NTZ and other thiazolides are active against a wide range of other intracellular and extracellular protozoan parasites in vitro and in vivo, but their mode of action and respective subcellular target(s) have only recently been investigated. In order to identify potential targets of NTZ and other thiazolides in Giardia lamblia trophozoites, we have developed an affinity chromatography system using the deacetylated derivative of NTZ, tizoxanide (TIZ), as a ligand. Affinity chromatography on TIZ-agarose using cell extracts of G. lamblia trophozoites resulted in the isolation of an approximately 35-kDa polypeptide, which was identified by mass spectrometry as a nitroreductase (NR) homologue (EAA43030.1). NR was overexpressed as a six-histidine-tagged recombinant protein in Escherichia coli, purified, and then characterized using an assay for oxygen-insensitive NRs with dinitrotoluene as a substrate. This demonstrated that the NR was functionally active, and the protein was designated GlNR1. In this assay system, NR activity was severely inhibited by NTZ and other thiazolides, demonstrating that the antigiardial activity of these drugs could be, at least partially, mediated through inhibition of GlNR1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Nitric oxide (NO) inhibits thrombus formation, vascular contraction, and smooth muscle cell proliferation. We investigated whether NO release is enhanced after endothelial NO synthase (eNOS) gene transfer in atherosclerotic human carotid artery ex vivo. METHODS AND RESULTS: Western blotting and immunohistochemistry revealed that transduction enhanced eNOS expression; however, neither nitrite production nor NO release measured by porphyrinic microsensor was altered. In contrast, transduction enhanced NO production in non-atherosclerotic rat aorta and human internal mammary artery. In transduced carotid artery, calcium-dependent eNOS activity was minimal and did not differ from control conditions. Vascular tetrahydrobiopterin concentrations did not differ between the experimental groups.Treatment of transduced carotid artery with FAD, FMN, NADPH, L-arginine, and either sepiapterin or tetrahydrobiopterin did not alter NO release. Superoxide formation was similar in transduced carotid artery and control. Treatment of transduced carotid artery with superoxide dismutase (SOD), PEG-SOD, PEG-catalase did not affect NO release. CONCLUSIONS: eNOS transduction in atherosclerotic human carotid artery results in high expression without any measurable activity of the recombinant protein. The defect in the atherosclerotic vessels is neither caused by cofactor deficiency nor enhanced NO breakdown. Since angioplasty is performed in atherosclerotic arteries,eNOS gene therapy is unlikely to provide clinical benefit.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have recently shown that the majority of allergens can be represented by allergen motifs. This observation prompted us to experimentally investigate the synthesized peptides corresponding to the in silico motifs with regard to potential IgE binding and cross-reactions with allergens. Two motifs were selected as examples to conduct in vitro studies. From the first motif, derived from allergenic MnSOD sequences, the motif stretch of the allergen Asp f 6 was selected and synthesized as a peptide (MnSOD Mot). The corresponding full-length MnSOD was also expressed in Escherichia coli and both were compared for IgE reactivity with sera of patients reacting to the MnSOD of Aspergillus fumigatus or Malassezia sympodialis. For the second motif, the invertebrate tropomyosin sequences were aligned and a motif consensus sequence was expressed as a recombinant protein (Trop Mot). The IgE reactivity of Trop Mot was analyzed in ELISA and compared to that of recombinant tropomyosin from the shrimp Penaeus aztecus (rPen a 1) in ImmunoCAP. MnSOD Mot was weakly recognized by some of the tested sera, suggesting that the IgE binding epitopes of a multimeric globular protein such as MnSOD cannot be fully represented by a motif peptide. In contrast, the motif Trop Mot showed the same IgE reactivity as shrimp full-length tropomyosin, indicating that the major allergenic reactivity of a repetitive structure such as tropomyosin can be covered by a motif peptide. Our results suggest that the motif-generating algorithm may be used for identifying major IgE binding structures of coiled-coil proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paraneoplastic pemphigus (PNP) shows autoantibodies mainly to plakin and desmosomal cadherin family proteins. We have recently identified alpha-2-macroglobulin-like-1 (A2ML1), a broad range protease inhibitor, as a unique PNP antigen. In this study, we tested a large number of PNP sera by various methods. Forty (69.0%) of 58 PNP sera recognized A2ML1 recombinant protein expressed in COS7 cells by immunofluorescence (IF) and/or immunoprecipitation (IP)/immunoblotting (IB). IP/IB showed higher sensitivity than IF. In addition, 22 (37.9%) PNP sera reacted with A2ML1 by IB of cultured normal human keratinocytes (NHKs) under non-reducing conditions. Statistical analyses using various clinical and immunological data showed that the presence of anti-A2ML1 autoantibodies was associated with early disease onset and absence of ocular lesions. Next, to investigate the pathogenic role of anti-A2ML1 antibody, we performed additional functional studies. Addition of anti-A2ML1 polyclonal antibody to culture media decreased NHK cell adhesion examined by dissociation assay, and increased plasmin activity detected by casein zymography, suggesting that anti-A2ML1 antibody may decrease NHK cell adhesion through plasmin activation by inhibition of A2ML1. This study demonstrates that autoantibodies to A2ML1 are frequently and specifically detected and may have a pathogenic role in PNP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The VP1 unique region (VP1u) of human parvovirus B19 (B19V) is the immunodominant part of the viral capsid. Originally inaccessible, the VP1u becomes exposed upon primary attachment to the globoside receptor. To study the function of the exposed VP1u in B19V uptake, we expressed this region as a recombinant protein. Here, we report that purified recombinant VP1u binds and is internalized in UT7/Epo cells. By means of truncations and specific antibodies, we identified the most N-terminal amino acid residues of VP1u as the essential region for binding and internalization. Furthermore, the recombinant VP1u was able to block B19V uptake, suggesting that the protein and the virus undertake the same internalization pathway. Assays with different erythroid and nonerythroid cell lines showed that the N-terminal VP1u binding was restricted to a few cell lines of the erythroid lineage, which were also the only cells that allowed B19V internalization and infection. These results together indicate that the N-terminal region of VP1u is responsible for the internalization of the virus and that the interacting receptor is restricted to B19V-susceptible cells. The highly selective uptake mechanism represents a novel determinant of the tropism and pathogenesis of B19V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pichia pastoris, a methylotrophic yeast, is an established system for the production of heterologous proteins, particularly biopharmaceuticals and industrial enzymes. To maximise and optimise the production of recombinant products, recent molecular research has focused on numerous issues including the design of expression vectors, optimisation of gene copy number, co-expression of secretory proteins such as chaperones, engineering of glycosylation and secretory pathways, etc. However, the physiological effects of different cultivation strategies are often difficult to separate from the molecular effects of the gene construct (e.g., cellular stress through over-expression or incorrect post-translational processing). Hence, overall system optimisation is difficult, even though it is urgently required in order to describe and understand the behaviour of new molecular constructs. This review focuses on particular aspects of recombinant protein production related to variations in biomass growth and their implications for strain design and screening, as well as on the concept of rational comparisons between cultivation systems for the development of specific production processes in bioreactors. The relationship between specific formation rates of secreted recombinant proteins, qp, and specific growth rates, μ, has been analysed in a conceptual attempt to compare different systems, particularly those based on AOX1/methanol and GAP/glucose, and this has now evolved into a pivotal concept for bioprocess engineering of P. pastoris.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The voltage-dependent anion-selective channel (VDAC) is an intrinsic β-barrel membrane protein located within the mitochondrial outer membrane where it serves as a pore, connecting the mitochondria to the cytosol. The high-resolution structures of both the human and murine VDACs have been resolved by X-ray diffraction and nuclear magnetic resonance spectroscopy (NMR) in 2008. However, the structural data are not completely in line with the findings that were obtained after decades of research on biochemical and functional analysis of VDAC. This discrepancy may be related to the fact that structural biology studies of membrane proteins reveal specific static conformations that may not necessarily represent the physiological state. For example, overexpression of membrane proteins in bacterial inclusion bodies or simply the extraction from the native lipid environment using harsh purification methods (i.e. chaotropic agents) can disturb the physiological conformations and the supramolecular assemblies. To address these potential issues, we have developed a method, allowing rapid one step purification of endogenous VDAC expressed in the native mitochondrial membrane without overexpression of recombinant protein or usage of harsh chaotropic extraction procedures. Using the Saccharomyces cerevisiae isoform 1 of VDAC as a model, this method yields efficient purification, preserving VDAC in a more physiological, native state following extraction from mitochondria. Single particle analysis using transmission electron microscopy (TEM) demonstrated conservation of oligomeric assembly after purification. Maintenance of the native state was evaluated using functional assessment that involves an ATP-binding assay by micro-scale thermophoresis (MST). Using this approach, we were able to determine for the first time the apparent KD for ATP of 1.2 mM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Endotoxin triggers the subarachnoid inflammation of gram-negative meningitis. This study examined the ability of a recombinant N-terminal fragment of bactericidal/permeability-increasing protein (rBPI23) to block endotoxin-induced meningitis in rabbits. Intracisternal (ic) injection of 10-20 ng of meningococcal endotoxin induced high cerebrospinal fluid (CSF) concentrations of tumor necrosis factor (TNF) and CSF pleocytosis and increased CSF lactate concentrations. ic administration of rBPI23 significantly reduced meningococcal endotoxin-induced TNF release into CSF (P < .005), lactate concentrations (P < .001), and CSF white blood cell counts (P < .01). No such effect was observed in animals receiving intravenous rBPI23. Concentrations of rBPI23 in CSF were high after ic administration but low or undetectable after systemic administration. Thus, high concentrations of rBPI23 can effectively neutralize meningococcal endotoxin in CSF, but low CSF concentrations after systemic administration currently limit its potential usefulness as adjunctive drug treatment in gram-negative meningitis.