85 resultados para Ranging signals
Resumo:
Satellite laser ranging (SLR) to the satellites of the global navigation satellite systems (GNSS) provides substantial and valuable information about the accuracy and quality of GNSS orbits and allows for the SLR-GNSS co-location in space. In the framework of the NAVSTAR-SLR experiment two GPS satellites of Block-IIA were equipped with laser retroreflector arrays (LRAs), whereas all satellites of the GLONASS system are equipped with LRAs in an operational mode. We summarize the outcome of the NAVSTAR-SLR experiment by processing 20 years of SLR observations to GPS and 12 years of SLR observations to GLONASS satellites using the reprocessed microwave orbits provided by the center for orbit determination in Europe (CODE). The dependency of the SLR residuals on the size, shape, and number of corner cubes in LRAs is studied. We show that the mean SLR residuals and the RMS of residuals depend on the coating of the LRAs and the block or type of GNSS satellites. The SLR mean residuals are also a function of the equipment used at SLR stations including the single-photon and multi-photon detection modes. We also show that the SLR observations to GNSS satellites are important to validate GNSS orbits and to assess deficiencies in the solar radiation pressure models. We found that the satellite signature effect, which is defined as a spread of optical pulse signals due to reflection from multiple reflectors, causes the variations of mean SLR residuals of up to 15 mm between the observations at nadir angles of 0∘ and 14∘. in case of multi-photon SLR stations. For single-photon SLR stations this effect does not exceed 1 mm. When using the new empirical CODE orbit model (ECOM), the SLR mean residual falls into the range 0.1–1.8 mm for high-performing single-photon SLR stations observing GLONASS-M satellites with uncoated corner cubes. For best-performing multi-photon stations the mean SLR residuals are between −12.2 and −25.6 mm due to the satellite signature effect.
Resumo:
Passive positioning systems produce user location information for third-party providers of positioning services. Since the tracked wireless devices do not participate in the positioning process, passive positioning can only rely on simple, measurable radio signal parameters, such as timing or power information. In this work, we provide a passive tracking system for WiFi signals with an enhanced particle filter using fine-grained power-based ranging. Our proposed particle filter provides an improved likelihood function on observation parameters and is equipped with a modified coordinated turn model to address the challenges in a passive positioning system. The anchor nodes for WiFi signal sniffing and target positioning use software defined radio techniques to extract channel state information to mitigate multipath effects. By combining the enhanced particle filter and a set of enhanced ranging methods, our system can track mobile targets with an accuracy of 1.5m for 50% and 2.3m for 90% in a complex indoor environment. Our proposed particle filter significantly outperforms the typical bootstrap particle filter, extended Kalman filter and trilateration algorithms.
Resumo:
The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.
Resumo:
In the early 2000s, several colonies of Alpine ibex (Capra ibex ibex) in Switzerland ceased growing or began to decrease. Reproductive problems clue to infections with abortive agents might have negatively affected recruitment. We assessed the presence of selected agents of abortion in Alpine ibex by serologic, molecular, and culture techniques and evaluated whether infection with these agents might have affected population densities. Blood and fecal samples were collected from 651 ibex in 14 colonies throughout the Swiss Alps between 2006 and 2008. All samples were negative for Salmonella. spp., Neospora caninum, and Bovine Herpesvirus-1. Antibodies to Coxiella burnetii, Leptospira spp., Chlamydophila abortus, Toxoplasma gondii, and Bovine Viral Diarrhea virus were detected in at least one ibex. Positive serologic results for Brucella spp. likely were false. Overall, 73 samples (11.2%) were antibody-positive for at least one abortive agent. Prevalence was highest for Leptospira spp. (7.9%, 95% CI=5.0-11.7). The low prevalences and the absence of significant differences between colonies with opposite population trends suggest these pathogens do not play a significant role in the population dynamics of Swiss ibex. Alpine ibex do not seem to be a reservoir for these abortive agents or an important source of infection for domestic livestock in Switzerland. Finally, although interactions on summer pastures occur frequently, spillover from infected livestock to free-ranging ibex apparently is uncommon.
Resumo:
The risk of transmission of pathogens from free-ranging wild boars (Sus scrofa scrofa) to outdoor domestic pigs (S. scrofa domesticus) is of increasing concern in many European countries. We assess this risk, using Switzerland as an example. We estimated 1) the prevalence of important pathogens in wild boars and 2) the risk of interactions between wild boars and outdoor pigs. First, we tested 252 wild boars from selected areas between 2008 and 2010 for infection with Brucella spp. Bacterial prevalence was estimated to 28.8% (confidence interval [CI] 23.0-34.0) when using bacterial culture (B. suis Biovar 2) and real-time polymerase chain reaction. Antibody prevalence was 35.8% (CI 30.0-42.0), which was significantly higher than in previous studies in Switzerland. We also tested 233 wild boars for porcine reproductive and respiratory syndrome virus (PRRSV). Antibody prevalence was 0.43% (CI 0.01-2.4) for EU-PRRSV and real-time reverse transcription polymerase chain reaction results were negative. These findings suggest that B. suis is increasingly widespread in wild boars and PRRSV is currently not of concern. Second, we documented the spatial overlap between free-ranging wild boars and outdoor piggeries by mapping data on their respective occurrence. Wild boars are most widespread in the mountain range along the western and northern Swiss borders, while most piggeries are located in central lowlands. A risk of interaction is mainly expected at the junction between these two bioregions. This risk may increase if wild boars expand eastward and southward beyond anthropogenic barriers believed to limit their range. Therefore, we evaluated the potential of expansion of the wild boar population. Population trends suggest a continuous increase of wild boars for the past 15 yr. Surveillance of selected wildlife passages using cameras on highways and main roads indicates that these barriers are permeable (average of up to 13 wild boar crossings per 100 days). Thus an increase of wild boar range should be considered. There may be a risk of B. suis spillover from wild boars in Switzerland, which could increase in the future. Data on the occurrence of interactions between pigs and wild boars are needed to assess this risk.