43 resultados para RNAI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Host determinants of HIV-1 viral tropism include factors from producer cells that affect the efficiency of productive infection and factors in target cells that block infection after viral entry. TRIM5 restricts HIV-1 infection at an early post-entry step through a mechanism associated with rapid disassembly of the retroviral capsid. Topoisomerase I (TOP1) appears to play a role in HIV-1 viral tropism by incorporating into or otherwise modulating virions affecting the efficiency of a post-entry step, as the expression of human TOP1 in African Green Monkey (AGM) virion-producing cells increased the infectivity of progeny virions by five-fold. This infectivity enhancement required human TOP1 residues 236 and 237 as their replacement with the AGM counterpart residues abolished the infectivity enhancement. Our previous studies showed that TOP1 interacts with BTBD1 and BTBD2, two proteins which co-localize with the TRIM5 splice variant TRIM5 in cytoplasmic bodies. Because BTBD1 and BTBD2 interact with one HIV-1 viral tropism factor, TOP1, and co-localize with a splice variant of another, we investigated the potential involvement of BTBD1 and BTBD2 in HIV-1 restriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

REV3, the catalytic subunit of translesion polymerase zeta (polζ), is commonly associated with DNA damage bypass and repair. Despite sharing accessory subunits with replicative polymerase δ, very little is known about the role of polζ in DNA replication. We previously demonstrated that inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. To reveal determinants of this sensitivity and obtain insights into the cellular function of REV3, we performed whole human genome RNAi library screens aimed at identification of synthetic lethal interactions with REV3 in A549 lung cancer cells. The top confirmed hit was RRM1, the large subunit of ribonucleotide reductase (RNR), a critical enzyme of de novo nucleotide synthesis. Treatment with the RNR-inhibitor hydroxyurea (HU) synergistically increased the fraction of REV3-deficient cells containing single stranded DNA (ssDNA) as indicated by an increase in replication protein A (RPA). However, this increase was not accompanied by accumulation of the DNA damage marker γH2AX suggesting a role of REV3 in counteracting HU-induced replication stress (RS). Consistent with a role of REV3 in DNA replication, increased RPA staining was confined to HU-treated S-phase cells. Additionally, we found genes related to RS to be significantly enriched among the top hits of the synthetic sickness/lethality (SSL) screen further corroborating the importance of REV3 for DNA replication under conditions of RS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activators of 5'-AMP-activated protein kinase (AMPK) 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), metformin, and exercise activate atypical protein kinase C (aPKC) and ERK and stimulate glucose transport in muscle by uncertain mechanisms. Here, in cultured L6 myotubes: AICAR- and metformin-induced activation of AMPK was required for activation of aPKC and ERK; aPKC activation involved and required phosphoinositide-dependent kinase 1 (PDK1) phosphorylation of Thr410-PKC-zeta; aPKC Thr410 phosphorylation and activation also required MEK1-dependent ERK; and glucose transport effects of AICAR and metformin were inhibited by expression of dominant-negative AMPK, kinase-inactive PDK1, MEK1 inhibitors, kinase-inactive PKC-zeta, and RNA interference (RNAi)-mediated knockdown of PKC-zeta. In mice, muscle-specific aPKC (PKC-lambda) depletion by conditional gene targeting impaired AICAR-stimulated glucose disposal and stimulatory effects of both AICAR and metformin on 2-deoxyglucose/glucose uptake in muscle in vivo and AICAR stimulation of 2-[(3)H]deoxyglucose uptake in isolated extensor digitorum longus muscle; however, AMPK activation was unimpaired. In marked contrast to AICAR and metformin, treadmill exercise-induced stimulation of 2-deoxyglucose/glucose uptake was not inhibited in aPKC-knockout mice. Finally, in intact rodents, AICAR and metformin activated aPKC in muscle, but not in liver, despite activating AMPK in both tissues. The findings demonstrate that in muscle AICAR and metformin activate aPKC via sequential activation of AMPK, ERK, and PDK1 and the AMPK/ERK/PDK1/aPKC pathway is required for metformin- and AICAR-stimulated increases in glucose transport. On the other hand, although aPKC is activated by treadmill exercise, this activation is not required for exercise-induced increases in glucose transport, and therefore may be a redundant mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

;Small interfering RNAs (siRNAs) can be exploited for the selective silencing of disease-related genes via the RNA interference (RNAi) machinery and therefore raise hope for future therapeutic applications. Especially chemically modified siRNAs are of interest as they are expected to convert lead siRNA sequences into effective drugs. To study the potential of tricyclo-DNA (tc-DNA) in this context we systematically incorporated tc-DNA units at various positions in a siRNA duplex targeted to the EGFP gene that was expressed in HeLa cells. Silencing activity was measured by FACS, mRNA levels were determined by RT-PCR and the biostability of the modifed siRNAs was determined in human serum. We found that modifications in the 3'-overhangs in both the sense and antisense strands were compatible with the RNAi machinery leading to similar activities compared to wild type (wt) siRNA. Additional modifications at the 3'-end, the 5'- end and in the center of the sense (passenger) strand were also well tolerated and did not compromise activity. Extensive modifications of the 3'- and the 5'-end in the antisense (guide) strand, however, abolished RNAi activity. Interestingly, modifications in the center of the duplex on both strands, corresponding to the position of the cleavage site by AGO2, increased efficacy relative to wt by a factor of 4 at the lowest concentrations (2 nM) investigated. In all cases, reduction of EGFP fluorescence was accompanied with a reduction of the EGFP mRNA level. Serum stability analysis further showed that 3'-overhang modifications only moderately increased stability while more extensive substitution by tc-DNA residues significantly enhanced biostability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3' UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3' UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3' UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of oligodeoxyribonucleotides and oligoribonucleotides containing single and multiple tricyclo(tc)-nucleosides in various arrangements were prepared and the thermal and thermodynamic transition profiles of duplexes with complementary DNA and RNA evaluated. Tc-residues aligned in a non-continuous fashion in an RNA strand significantly decrease affinity to complementary RNA and DNA, mostly as a consequence of a loss of pairing enthalpy DeltaH. Arranging the tc-residues in a continuous fashion rescues T(m) and leads to higher DNA and RNA affinity. Substitution of oligodeoxyribonucleotides in the same way causes much less differences in T(m) when paired to complementary DNA and leads to substantial increases in T(m) when paired to complementary RNA. CD-spectroscopic investigations in combination with molecular dynamics simulations of duplexes with single modifications show that tc-residues in the RNA backbone distinctly influence the conformation of the neighboring nucleotides forcing them into higher energy conformations, while tc-residues in the DNA backbone seem to have negligible influence on the nearest neighbor conformations. These results rationalize the observed affinity differences and are of relevance for the design of tc-DNA containing oligonucleotides for applications in antisense or RNAi therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic nucleotide specific phosphodiesterases (PDEs) are pivotal regulators of cellular signaling. They are also important drug targets. Besides catalytic activity and substrate specificity, their subcellular localization and interaction with other cell components are also functionally important. In contrast to the mammalian PDEs, the significance of PDEs in protozoal pathogens remains mostly unknown. The genome of Trypanosoma brucei, the causative agent of human sleeping sickness, codes for five different PDEs. Two of these, TbrPDEB1 and TbrPDEB2, are closely similar, cAMP-specific PDEs containing two GAF-domains in their N-terminal regions. Despite their similarity, these two PDEs exhibit different subcellular localizations. TbrPDEB1 is located in the flagellum, whereas TbrPDEB2 is distributed between flagellum and cytoplasm. RNAi against the two mRNAs revealed that the two enzymes can complement each other but that a simultaneous ablation of both leads to cell death in bloodstream form trypanosomes. RNAi against TbrPDEB1 and TbrPDEB2 also functions in vivo where it completely prevents infection and eliminates ongoing infections. Our data demonstrate that TbrPDEB1 and TbrPDEB2 are essential for virulence, making them valuable potential targets for new PDE-inhibitor based trypanocidal drugs. Furthermore, they are compatible with the notion that the flagellum of T. brucei is an important site of cAMP signaling.--Oberholzer, M., Marti, G., Baresic, M., Kunz, S., Hemphill, A., Seebeck, T. The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using variants of the murine BW5147 lymphoma cell-line, we have previously identified 3 monoclonal antibodies (MAbs) that discriminate between metastatic and nonmetastatic BW5147-derived T-cell hybridomas and lymphomas, as well as BW5147-unrelated T-lymphomas. These MAbs were reported to recognize an identical membrane-associated sialoglycoprotein, termed "metastatic T-cell hybridoma antigen" (MTH-Ag). Here, we document that the expression pattern of the MTH-Ag on metastatic and nonmetastatic BW5147 variants correlates with that of the P-selectin glycoprotein ligand 1 (PSGL-1), a sialomucin involved in leukocyte recruitment to sites of inflammation. Moreover, the MAbs against the MTH-Ag recognize PSGL-1 when it is transfected in MTH-Ag-negative BW5147 variants, suggesting that the MTH-Ag is PSGL-1. Overexpression of MTH-Ag/PSGL-1 in MTH-Ag-negative BW5147 variants did not affect their in vivo malignancy. Yet, down-regulation of MTH-Ag/PSGL-1 expression on metastatic, MTH-Ag-positive BW5147 variants, using an RNA interference (RNAi) approach, resulted, in a dose-dependent manner, in a significant reduction of liver and spleen colonization and a delay in mortality of the recipient mice upon intravenous inoculation. Collectively, these results demonstrate that, although MTH-Ag/PSGL-1 overexpression alone may not be sufficient for successful dissemination and organ colonization, MTH-Ag/PSGL-1 plays a critical role in hematogenous metastasis of lymphoid cancer cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glycosylphosphatidylinositol (GPI) lipids of Trypanosoma brucei undergo lipid remodelling, whereby longer fatty acids on the glycerol are replaced by myristate (C14:0). A similar process occurs on GPI proteins of Saccharomyces cerevisiae where Per1p first deacylates, Gup1p subsequently reacylates the anchor lipid, thus replacing a shorter fatty acid by C26:0. Heterologous expression of the GUP1 homologue of T. brucei in gup1Delta yeast cells partially normalizes the gup1Delta phenotype and restores the transfer of labelled fatty acids from Coenzyme A to lyso-GPI proteins in a newly developed microsomal assay. In this assay, the Gup1p from T. brucei (tbGup1p) strongly prefers C14:0 and C12:0 over C16:0 and C18:0, whereas yeast Gup1p strongly prefers C16:0 and C18:0. This acyl specificity of tbGup1p closely matches the reported specificity of the reacylation of free lyso-GPI lipids in microsomes of T. brucei. Depletion of tbGup1p in trypanosomes by RNAi drastically reduces the rate of myristate incorporation into the sn-2 position of lyso-GPI lipids. Thus, tbGup1p is involved in the addition of myristate to sn-2 during GPI remodelling in T. brucei and can account for the fatty acid specificity of this process. tbGup1p can act on GPI proteins as well as on GPI lipids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The signals and molecular mechanisms that regulate the replication of terminally differentiated beta cells are unknown. Here, we report the identification and characterization of transmembrane protein 27 (Tmem27, collectrin) in pancreatic beta cells. Expression of Tmem27 is reduced in Tcf1(-/-) mice and is increased in islets of mouse models with hypertrophy of the endocrine pancreas. Tmem27 forms dimers and its extracellular domain is glycosylated, cleaved and shed from the plasma membrane of beta cells. This cleavage process is beta cell specific and does not occur in other cell types. Overexpression of full-length Tmem27, but not the truncated or soluble protein, leads to increased thymidine incorporation, whereas silencing of Tmem27 using RNAi results in a reduction of cell replication. Furthermore, transgenic mice with increased expression of Tmem27 in pancreatic beta cells exhibit increased beta cell mass. Our results identify a pancreatic beta cell transmembrane protein that regulates cell growth of pancreatic islets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) are an abundant class of 20-23-nt long regulators of gene expression. The study of miRNA function in mice and potential therapeutic approaches largely depend on modified oligonucleotides. We recently demonstrated silencing miRNA function in mice using chemically modified and cholesterol-conjugated RNAs termed 'antagomirs'. Here, we further characterize the properties and function of antagomirs in mice. We demonstrate that antagomirs harbor optimized phosphorothioate modifications, require >19-nt length for highest efficiency and can discriminate between single nucleotide mismatches of the targeted miRNA. Degradation of different chemically protected miRNA/antagomir duplexes in mouse livers and localization of antagomirs in a cytosolic compartment that is distinct from processing (P)-bodies indicates a degradation mechanism independent of the RNA interference (RNAi) pathway. Finally, we show that antagomirs, although incapable of silencing miRNAs in the central nervous system (CNS) when injected systemically, efficiently target miRNAs when injected locally into the mouse cortex. Our data further validate the effectiveness of antagomirs in vivo and should facilitate future studies to silence miRNAs for functional analysis and in clinically relevant settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are the two major constituents of eukaryotic cell membranes. In the protist Trypanosoma brucei, PE and PC are synthesized exclusively via the Kennedy pathway. To determine which organelles or processes are most sensitive to a disruption of normal phospholipid levels, the cellular consequences of a decrease in the levels of PE or PC, respectively, were studied following RNAi knock-down of four enzymes of the Kennedy pathway. RNAi against ethanolamine-phosphate cytidylyltransferase (ET) disrupted mitochondrial morphology and ultrastructure. Electron microscopy revealed alterations of inner mitochondrial membrane morphology, defined by a loss of disk-like cristae. Despite the structural changes in the mitochondrion, the cells maintained oxidative phosphorylation. Our results indicate that the inner membrane morphology of T. brucei procyclic forms is highly sensitive to a decrease of PE levels, as a change in the ultrastructure of the mitochondrion is the earliest phenotype observed after RNAi knock-down of ET. Interference with phospholipid synthesis also impaired normal cell-cycle progression. ET RNAi led to an accumulation of multinucleate cells. In contrast, RNAi against choline-/ethanolamine phosphotransferase, which affected PC as well as PE levels, caused a cell division phenotype characterized by non-division of the nucleus and production of zoids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Export of mRNA from the nucleus is linked to proper processing and packaging into ribonucleoprotein complexes. Although several observations indicate a coupling between mRNA 3' end formation and export, it is not known how these two processes are mechanistically connected. Here, we show that a subunit of the mammalian pre-mRNA 3' end processing complex, CF I(m)68, stimulates mRNA export. CF I(m)68 shuttles between the nucleus and the cytoplasm in a transcription-dependent manner and interacts with the mRNA export receptor NXF1/TAP. Consistent with the idea that CF I(m)68 may act as a novel adaptor for NXF1/TAP, we show that CF I(m)68 promotes the export of a reporter mRNA as well as of endogenous mRNAs, whereas silencing by RNAi results in the accumulation of mRNAs in the nucleus. Moreover, CF I(m)68 associates with 80S ribosomes but not polysomes, suggesting that it is part of the mRNP that is remodeled in the cytoplasm during the initial stages of translation. These results reveal a novel function for the pre-mRNA 3' end processing factor CF I(m)68 in mRNA export.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant PTR/NRT1 (peptide transporter/nitrate transporter 1) gene family comprises di/tripeptide and low-affinity nitrate transporters; some members also recognize other substrates such as carboxylates, phytohormones (auxin and abscisic acid), or defence compounds (glucosinolates). Little is known about the members of this gene family in rice (Oryza sativa L.). Here, we report the influence of altered OsPTR9 expression on nitrogen utilization efficiency, growth, and grain yield. OsPTR9 expression is regulated by exogenous nitrogen and by the day-night cycle. Elevated expression of OsPTR9 in transgenic rice plants resulted in enhanced ammonium uptake, promotion of lateral root formation and increased grain yield. On the other hand, down-regulation of OsPTR9 in a T-DNA insertion line (osptr9) and in OsPTR9-RNAi rice plants had the opposite effect. These results suggest that OsPTR9 might hold potential for improving nitrogen utilization efficiency and grain yield in rice breeding.