153 resultados para Prolactin hormone
Resumo:
In most mammals, prolactin (PRL) is essential for maintaining lactation, and yet the short-term suppression of PRL during established lactation by bromocriptine has produced inconsistent effects on milk yield in cows and goats. To assess the effect of the long-term inhibition of PRL release in lactating dairy cows, 5 Holstein cows in early lactation received daily intramuscular injections of 1mg of the PRL-release inhibitor quinagolide for 9 wk. Four control cows received the vehicle (water) only. During the last week of the treatments, one udder half was milked once a day (1x) and the other twice a day (2x). Blood samples were harvested at milking in wk -1, 1, 4, and 8. The daily injections of quinagolide reduced milking-induced PRL release but not the basal PRL concentration. Quinagolide induced a faster decline in milk production, which was about 5.3 kg/d lower in the quinagolide-treated cows during the last 4 wk of treatment. During wk 9, the inhibition of milk production by quinagolide was maintained in the udder half that was milked 2x but not in the half milked 1x. Milk production was significantly correlated with the quantity of PRL released at milking. Quinagolide did not affect the release of oxytocin at milking. Serum concentration of insulin-like growth factor-1 was not affected by treatment or correlated with milk production. Serum concentrations of leptin and the calciotropic hormone stanniocalcin were not affected by the treatment. In conclusion, the chronic administration of the PRL-release inhibitor quinagolide decreases milk production in dairy cows. The effect is likely the result of the reduced release of milking-induced PRL and is modulated at the level of the gland by milking frequency.
Resumo:
Endocrine and neuroendocrine cells differ from cells which rapidly release all their secreted proteins in that they store some secretory proteins in concentrated forms in secretory granules to be rapidly released when cells are stimulated. Protein aggregation is considered as the first step in the secretory granule biosynthesis and, at least in the case of prolactin and growth hormone, greatly depends on zinc ions that facilitate this process. Hence, regulation of cellular zinc transport especially that within the regulated secretory pathway is of importance to understand. Various zinc transporters of Slc30a/ZnT and Slc39a/Zip families have been reported to fulfil this role and to participate in fine tuning of zinc transport in and out of the endoplasmic reticulum, Golgi complex and secretory granules, the main cellular compartments of the regulated secretory pathway. In this review, we will focus on the role of zinc in the formation of hormone-containing secretory granules with special emphasis on conditions required for growth hormone dimerization/aggregation. In addition, we highlight the role of zinc transporters that govern the process of zinc homeostasis in the regulated hormone secretion.
Resumo:
This study was conducted to investigate the effects of rumen-protected tryptophan (125g tryptophan per day) in heifers and dairy cows. Blood samples from dairy cows and heifers were collected for 24h in 3-h intervals on the day before tryptophan supplementation, on day 2, 5 and 7 of tryptophan supplementation, and in heifers additionally on d 14 after tryptophan supplementation was ceased. Plasma tryptophan, melatonin, serotonin, and prolactin concentrations were determined. Tryptophan plasma concentrations on d 5 were augmented at day (11:00h) and nighttime (02:00h), (P<0.05) in response to tryptophan supplementation in heifers by 119% and in dairy cows by 47%, respectively, as compared with d 0. Melatonin increased (P<0.05) in response to tryptophan supplementation in heifers, but not in cows. The effect of tryptophan supplementation on plasma tryptophan and melatonin was reversible as demonstrated in heifers on d 14 after cessation of tryptophan supplementation. Serotonin and prolactin in plasma did not respond to tryptophan supplementation. However, milk yield during morning milking increased significantly in tryptophan supplemented cows on d 1, 3 and 4 as compared to the day before tryptophan supplementation. Additional blood samples were taken during afternoon milking in cows at 1-min intervals for the analyses of oxytocin and prolactin on the day before the start and on d 7 of tryptophan supplementation. Milk flow curves were recorded during milking. No effect of tryptophan supplementation on the milking related release of oxytocin and prolactin and on any characteristic of milk flow was observed. In conclusion, tryptophan supplementation caused increased plasma tryptophan in cows and heifers and plasma melatonin in heifers. However, plasma serotonin, prolactin and oxytocin release in cows remained unchanged by tryptophan supplementation. Milk yield at morning milking increased slightly and transiently in response to tryptophan supplementation.
Resumo:
Sphingosine kinases (SK) catalyze the formation of sphingosine-1-phosphate (S1P) which plays a crucial role in cell growth and survival. Here, we show that prolactin (PRL) biphasically activates the SK-1, but not the SK-2 subtype, in the breast adenocarcinoma cell-line MCF7. A first peak occurs after minutes of stimulation and is followed by a second delayed activation after hours of stimulation. A similar biphasic effect on SK-1 activity is seen for 17beta-estradiol (E(2)). The delayed activation of SK-1 derives from an upregulated mRNA and protein expression and is due to increased SK-1 promoter activity and mechanistically involves STAT5 activation as well as protein kinase C and the classical mitogen-activated protein kinases. Furthermore, glucocorticoids also block both hormone-induced SK-1 expression and activity. Functionally, long-term stimulation of MCF7 cells with PRL or E(2) is well known to trigger increased cell proliferation and migration. Both hormone-induced cell responses critically involve SK-1 activation since the depletion of SK-1, but not SK-2, by siRNA transfection abolishes the hormone-induced cell proliferation and migration. In summary, our data show that PRL and E(2) cause a pronounced delayed SK-1 activation which is due to increased gene transcription, and critically determines the capability of cells to grow and move. Thus, the SK-1 may represent a novel attractive target for anti-tumor therapy.
Resumo:
Growth hormone insensitivity syndrome (GHIS) is a rare cause of growth retardation characterized by high serum GH levels, and low serum insulin-like growth factor I (IGF-I) levels associated with a genetic defect of the GH receptor (GHR) as well post-GHR signaling pathway. Based on clinical, as well as biochemical characteristics, GHIS can be genetically classified as classical/Laron's syndrome and nonclassical/atypical GHIS. Recombinant human IGF-I (rhIGF-I) treatment is effective in promoting growth in subjects who have GHIS. Further, pharmacological studies of a IGF-I compound containing a 1:1 molar complex of rhIGF-I and rhIGF-binding protein-3 (BP-3) demonstrated that the complex was effective in increasing levels of circulating total and free IGF-I and that the administration in patients with GHIS should be safe, well-tolerated and more effective than rhIGF-I on its own.
Resumo:
Context and Objective: Main features of the autosomal dominant form of GH deficiency (IGHD II) include markedly reduced secretion of GH combined with low concentrations of IGF-I leading to short stature. Design, Setting, and Patients: A female patient presented with short stature (height -6.0 sd score) and a delayed bone age of 2 yr at the chronological age of 5 yr. Later, at the age of 9 yr, GHD was confirmed by standard GH provocation test, which revealed subnormal concentrations of GH and a very low IGF-I. Genetic analysis of the GH-1 gene revealed the presence of a heterozygous R178H mutation. Interventions and Results: AtT-20 cells coexpressing both wt-GH and GH-R178H showed a reduced GH secretion after forskolin stimulation compared with the cells expressing only wt-GH, supporting the diagnosis of IGHD II. Because reduced GH concentrations found in the circulation of our untreated patient could not totally explain her severe short stature, functional characterization of the GH-R178H performed by studies of GH receptor binding and activation of the Janus kinase-2/signal transducer and activator of transcription-5 pathway revealed a reduced binding affinity of GH-R178H for GH receptor and signaling compared with the wt-GH. Conclusion: This is the first report of a patient suffering from short stature caused by a GH-1 gene alteration affecting not only GH secretion (IGHD II) but also GH binding and signaling, highlighting the necessity of functional analysis of any GH variant, even in the alleged situation of IGHD II.
Resumo:
An autosomal dominant form of isolated GH deficiency (IGHD II) can result from heterozygous splice site mutations that weaken recognition of exon 3 leading to aberrant splicing of GH-1 transcripts and production of a dominant-negative 17.5-kDa GH isoform. Previous studies suggested that the extent of missplicing varies with different mutations and the level of GH expression and/or secretion. To study this, wt-hGH and/or different hGH-splice site mutants (GH-IVS+2, GH-IVS+6, GH-ISE+28) were transfected in rat pituitary cells expressing human GHRH receptor (GC-GHRHR). Upon GHRH stimulation, GC-GHRHR cells coexpressing wt-hGH and each of the mutants displayed reduced hGH secretion and intracellular GH content when compared with cells expressing only wt-hGH, confirming the dominant-negative effect of 17.5-kDa isoform on the secretion of 22-kDa GH. Furthermore, increased amount of 17.5-kDa isoform produced after GHRH stimulation in cells expressing GH-splice site mutants reduced production of endogenous rat GH, which was not observed after GHRH-induced increase in wt-hGH. In conclusion, our results support the hypothesis that after GHRH stimulation, the severity of IGHD II depends on the position of splice site mutation leading to the production of increasing amounts of 17.5-kDa protein, which reduces the storage and secretion of wt-GH in the most severely affected cases. Due to the absence of GH and IGF-I-negative feedback in IGHD II, a chronic up-regulation of GHRH would lead to an increased stimulatory drive to somatotrophs to produce more 17.5-kDa GH from the severest mutant alleles, thereby accelerating autodestruction of somatotrophs in a vicious cycle.
Resumo:
To compare exercise-induced growth hormone (GH) response in patients with Type 1 diabetes during stable euglycaemic and hyperglycaemic conditions.
Resumo:
Hypopituitarism with adult-onset growth hormone deficiency (GHD) is associated with increased cardiovascular morbidity and mortality due to premature and progressive atherosclerosis. An underlying cause of atherosclerosis is increased insulin resistance. Elevated fasting and postprandial glucose and lipid levels may contribute to premature atherosclerosis. We studied effects of growth hormone replacement (GHRT) on fasting and postprandial metabolic parameters as well as on insulin sensitivity in patients with adult-onset GHD.
Resumo:
Background: Body mass index (BMI) is a risk factor for endometrial cancer. We quantified the risk and investigated whether the association differed by use of hormone replacement therapy (HRT), menopausal status, and histologic type. Methods: We searched MEDLINE and EMBASE (1966 to December 2009) to identify prospective studies of BMI and incident endometrial cancer. We did random-effects meta-analyses, meta-regressions, and generalized least square regressions for trend estimations assuming linear, and piecewise linear, relationships. Results: Twenty-four studies (17,710 cases) were analyzed; 9 studies contributed to analyses by HRT, menopausal status, or histologic type, all published since 2003. In the linear model, the overall risk ratio (RR) per 5 kg/m2 increase in BMI was 1.60 (95% CI, 1.52–1.68), P < 0.0001. In the piecewise model, RRs compared with a normal BMI were 1.22 (1.19–1.24), 2.09 (1.94–2.26), 4.36 (3.75–5.10), and 9.11 (7.26–11.51) for BMIs of 27, 32, 37, and 42 kg/m2, respectively. The association was stronger in never HRT users than in ever users: RRs were 1.90 (1.57–2.31) and 1.18 (95% CI, 1.06–1.31) with P for interaction ¼ 0.003. In the piecewise model, the RR in never users was 20.70 (8.28–51.84) at BMI 42 kg/m2, compared with never users at normal BMI. The association was not affected by menopausal status (P ¼ 0.34) or histologic type (P ¼ 0.26). Conclusions: HRT use modifies the BMI-endometrial cancer risk association. Impact: These findings support the hypothesis that hyperestrogenia is an important mechanism underlying the BMI-endometrial cancer association, whilst the presence of residual risk in HRT users points to the role of additional systems. Cancer Epidemiol Biomarkers Prev; 19(12); 3119–30.
Resumo:
We hypothesized that network analysis is useful to expose coordination between whole body and myocellular levels of energy metabolism and can identify entities that underlie skeletal muscle's contribution to growth hormone-stimulated lipid handling and metabolic fitness. We assessed 112 metabolic parameters characterizing metabolic rate and substrate handling in tibialis anterior muscle and vascular compartment at rest, after a meal and exercise with growth hormone replacement therapy (GH-RT) of hypopituitary patients (n = 11). The topology of linear relationships (| r | ≥ 0.7, P ≤ 0.01) and mutual dependencies exposed the organization of metabolic relationships in three entities reflecting basal and exercise-induced metabolic rate, triglyceride handling, and substrate utilization in the pre- and postprandial state, respectively. GH-RT improved aerobic performance (+5%), lean-to-fat mass (+19%), and muscle area of tibialis anterior (+2%) but did not alter its mitochondrial and capillary content. Concomitantly, connectivity was established between myocellular parameters of mitochondrial lipid metabolism and meal-induced triglyceride handling in serum. This was mediated via the recruitment of transcripts of muscle lipid mobilization (LIPE, FABP3, and FABP4) and fatty acid-sensitive transcription factors (PPARA, PPARG) to the metabolic network. The interdependence of gene regulatory elements of muscle lipid metabolism reflected the norm in healthy subjects (n = 12) and distinguished the regulation of the mitochondrial respiration factor COX1 by GH and endurance exercise. Our observations validate the use of network analysis for systems medicine and highlight the notion that an improved stochiometry between muscle and whole body lipid metabolism, rather than alterations of single bottlenecks, contributes to GH-driven elevations in metabolic fitness.
Resumo:
It is becoming most clear that many genes are involved in controlling the regulation of growth. Ultimately however, at the level of growth hormone (GH), the relevant question may be not whether a patient is GH-deficient, but whether he is GH-responsive. As these disturbances can be divided into two gross categories, namely alterations causing subnormal GH secretion and/or those presenting with subnormal GH sensitivity/responsiveness, the main aim of this review is to focus on genes involved in growth regulation leading to short stature caused by an alteration of GH insensitivity/GH responsiveness; in other words, clinical circumstances where individually adapted GH replacement therapy may help to increase height velocity and eventually final height.
Resumo:
Triple-negative breast cancer does not express estrogen and progesterone receptors, and no overexpression/amplification of the HER2-neu gene occurs. Therefore, this subtype of breast cancer lacks the benefits of specific therapies that target these receptors. Today chemotherapy is the only systematic therapy for patients with triple-negative breast cancer. About 50% to 64% of human breast cancers express receptors for gonadotropin-releasing hormone (GnRH), which might be used as a target. New targeted therapies are warranted. Recently, we showed that antagonists of gonadotropin-releasing hormone type II (GnRH-II) induce apoptosis in human endometrial and ovarian cancer cells in vitro and in vivo. This was mediated through activation of stress-induced mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK), followed by activation of proapoptotic protein Bax, loss of mitochondrial membrane potential, and activation of caspase-3. In the present study, we analyzed whether GnRH-II antagonists induce apoptosis in MCF-7 and triple-negative MDA-MB-231 human breast cancer cells that express GnRH receptors. In addition, we ascertained whether knockdown of GnRH-I receptor expression affects GnRH-II antagonist-induced apoptosis and apoptotic signaling.
Resumo:
Increasing evidence supports GnRH agonists to be an effective treatment to preserve ovarian function during chemotherapy, but the initial flare-up of FSH during the first week after GnRH agonist application still limits its use. The combination of GnRH agonists with GnRH antagonists might solve this problem to some extent as the addition of GnRH antagonists at least significantly reduces the FSH flare-up.