65 resultados para Proinflammatory cytokines
Resumo:
We performed mRNA in situ hybridization for TNF-alpha and IL-1beta from infant rats with group B streptococcal meningitis. Induction of both cytokines was seen in the ependyma and the meninges at 4 h. Both cytokines were expressed in the brain parenchyma at 12 h. Induction of IL-1beta mRNA was seen in vessels within the brain cortex. Neutrophilic infiltrate at all time points examined was minimal and could not account for the observed cytokine expression.
Resumo:
Papillomaviruses (PV) are double stranded (ds) DNA viruses that infect epithelial cells within the skin or mucosa, most often causing benign neoplasms that spontaneously regress. The immune system plays a key role in the defense against PVs. Since these viruses infect keratinocytes, we wanted to investigate the role of the keratinocyte in initiating an immune response to canine papillomavirus-2 (CPV-2) in the dog. Keratinocytes express a variety of pattern recognition receptors (PRR) to distinguish different cutaneous pathogens and initiate an immune response. We examined the mRNA expression patterns for several recently described cytosolic nucleic acid sensing PRRs in canine monolayer keratinocyte cultures using quantitative reverse transcription-polymerase chain reaction. Unstimulated normal cells were found to express mRNA for melanoma differentiation associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), DNA-dependent activation of interferon regulatory factors, leucine rich repeat flightless interacting protein 1, and interferon inducible gene 16 (IFI16), as well as their adaptor molecules myeloid differentiation primary response gene 88, interferon-β promoter stimulator 1, and endoplasmic reticulum-resident transmembrane protein stimulator of interferon genes. When stimulated with synthetic dsDNA [poly(dA:dT)] or dsRNA [poly(I:C)], keratinocytes responded with increased mRNA expression levels for interleukin-6, tumor necrosis factor-α, interferon-β, RIG-I, IFI16, and MDA5. There was no detectable increase in mRNA expression, however, in keratinocytes infected with CPV-2. Furthermore, CPV-2-infected keratinocytes stimulated with poly(dA:dT) and poly(I:C) showed similar mRNA expression levels for these gene products when compared with expression levels in uninfected cells. These results suggest that although canine keratinocytes contain functional PRRs that can recognize and respond to dsDNA and dsRNA ligands, they do not appear to recognize or initiate a similar response to CPV-2.
Resumo:
IL-1 and TNF are important proinflammatory cytokines implicated in both antimicrobial host defense and pathogenesis of diseases with an immune-mediated and/or inflammatory component. Respective studies in the dog have been hampered by the unavailability of reagents allowing the specific measurement of canine cytokine proteins and the effect of canine cytokine neutralization by Ab. Starting with recombinant canine (rcan) IL-1beta and rcanTNF, four polyclonal antisera and 22 mAb specific for rcanIL-1beta and rcanTNF were generated. Their usefulness in neutralization assays was determined. Using cytokine-containing supernatants of canine cells in bioassays, polyclonal antisera neutralized either canine IL-1beta or TNF. TNF was also neutralized by three antibodies developed in this study and one commercial mAb. The usefulness of monoclonal and polyclonal Ab in canine cytokine-specific Ab capture ELISA's was assessed. This resulted in the identification of a commercial mAb combination and one pair developed in this study allowing low levels of TNF to be detected by antibody capture ELISA. The detection limit was 141 pg/ml rcanTNF for both combinations. Using rcanIL-1beta as an antigen allowed the detection of lower concentrations of rcanIL-1beta (20 pg/ml, on the average) by a pair of polyclonal antisera than when monoclonals were used. By using such IL-1beta-specific and TNF-specific ELISA's, the respective cytokines were detected in supernatants of canine PBMC stimulated with LPS or heat-killed Listeria monocytogenes and interferon-gamma combined. Thus, monoclonal and polyclonal reagents were identified allowing the quantitation of canine IL-1beta and TNF production in vitro, and the neutralization of these cytokines.
Resumo:
During sepsis, activation of phagocytes leads to the overproduction of proinflammatory cytokines, causing systemic inflammation. Despite substantial information regarding the underlying molecular mechanisms that lead to sepsis, several elements in the pathway remain to be elucidated. We found that the enzyme sphingosine kinase 1 (SphK1) is up-regulated in stimulated human phagocytes and in peritoneal phagocytes of patients with severe sepsis. Blockade of SphK1 inhibited phagocyte production of endotoxin-induced proinflammatory cytokines. We observed protection against sepsis in mice treated with a specific SphK1 inhibitor that was enhanced by treatment with a broad-spectrum antibiotic. These results demonstrated a critical role for SphK1 in endotoxin signaling and sepsis-induced inflammatory responses and suggest that inhibition of SphK1 is a potential therapy for septic shock.
Resumo:
The purpose of this study was to assess the expression profile of genes with potential role in the development of insulin resistance (adipokines, cytokines/chemokines, estrogen receptors) in subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT) and placenta of pregnant women with gestational diabetes mellitus (GDM) and age-matched women with physiological pregnancy at the time of Caesarean section. qRT-PCR was used for expression analysis of the studied genes. Leptin gene expression in VAT of GDM group was significantly higher relative to control group. Gene expressions of interleukin-6 and interleukin-8 were significantly increased, whereas the expressions of genes for estrogen receptors alpha and beta were significantly reduced in SAT of GDM group relative to controls, respectively. We found no significant differences in the expression of any genes of interest (LEP, RETN, ADIPOR1, ADIPOR2, TNF-alpha, CD68, IL-6, IL-8, ER alpha, ER beta) in placentas of women with GDM relative to controls. We conclude that increased expression of leptin in visceral adipose depot together with increased expressions of proinflammatory cytokines and reduced expressions of estrogen receptors in subcutaneous fat may play a role in the etiopathogenesis of GDM.
Resumo:
Autoimmune and infectious diseases are associated with behavioral changes referred to as sickness behavior syndrome (SBS). In autoimmunity, the generation of anti-self T lymphocytes and autoantibodies critically involves binding of CD40 ligand on T-cells to its receptor CD40 on B-cells, dendritic cells and macrophages. Activation of CD40 leads to production of proinflammatory cytokines and, as shown here, induces SBS. Here we report that these behavioral changes depend on the expression of tumor necrosis factor alpha receptor 1 (TNFR1), but not on interleukin-1 receptor 1 or interleukin-6. Moreover, the intensity of SBS correlates with suppression of E-box controlled clock genes, including Dbp, and upregulation of Bmal1. However, the absence of TNFR1 does not interfere with the development of SBS and dysregulation of clock genes in mice treated with lipopolysaccharide. Thus, our results suggest that TNFR1 mediates SBS and dysregulation of clock genes in autoimmune diseases.
Resumo:
Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.
Resumo:
Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.
Resumo:
Endurance athletes have an increased risk of atrial fibrillation. We performed a longitudinal study on elite runners of the 2010 Jungfrau Marathon, a Swiss mountain marathon, to determine acute effects of long-distance running on the atrial myocardium. Ten healthy male athletes were included and examined 9 to 1 week prior to the race, immediately after, and 1, 5, and 8 days after the race. Mean age was 34.9 ± 4.2 years, and maximum oxygen consumption was 66.8 ± 5.8 mL/kg*min. Mean race time was 243.9 ± 17.7 min. Electrocardiographic-determined signal-averaged P-wave duration (SAPWD) increased significantly after the race and returned to baseline levels during follow-up (128.7 ± 10.9 vs. 137.6 ± 9.8 vs. 131.5 ± 8.6 ms; P < 0.001). Left and right atrial volumes showed no significant differences over time, and there were no correlations of atrial volumes and SAPWD. Prolongation of the SAPWD was accompanied by a transient increase in levels of high-sensitivity C-reactive protein, proinflammatory cytokines, total leucocytes, neutrophil granulocytes, pro atrial natriuretic peptide and high-sensitivity troponin. In conclusion, marathon running was associated with a transient conduction delay in the atria, acute inflammation and increased atrial wall tension. This may reflect exercise-induced atrial myocardial edema and may contribute to atrial remodeling over time, generating a substrate for atrial arrhythmias.
Resumo:
Toll-like receptors (TLRs) are key receptors of the innate immune system which are expressed on immune and nonimmune cells. They are activated by both pathogen-associated molecular patterns and endogenous ligands. Activation of TLRs culminates in the release of proinflammatory cytokines, chemokines, and apoptosis. Ischaemia and ischaemia/reperfusion (I/R) injury are associated with significant inflammation and tissue damage. There is emerging evidence to suggest that TLRs are involved in mediating ischaemia-induced damage in several organs. Critical limb ischaemia (CLI) is the most severe form of peripheral arterial disease (PAD) and is associated with skeletal muscle damage and tissue loss; however its pathophysiology is poorly understood. This paper will underline the evidence implicating TLRs in the pathophysiology of cerebral, renal, hepatic, myocardial, and skeletal muscle ischaemia and I/R injury and discuss preliminary data that alludes to the potential role of TLRs in the pathophysiology of skeletal muscle damage in CLI.
Resumo:
Human intravenous immunoglobulin (IVIg) preparations are increasingly used for the treatment of autoimmune diseases. Earlier work demonstrated the presence of autoantibodies against Fas in IVIg, suggesting that IVIg might be able to induce caspase-dependent cell death in Fas-sensitive cells. In this study, we demonstrate that sialic acid-binding Ig-like lectin 9 (Siglec) represents a surface molecule on neutrophils that is activated by IVIg, resulting in caspase-dependent and caspase-independent forms of cell death. Neutrophil death was mediated by naturally occurring anti-Siglec-9 autoantibodies present in IVIg. Moreover, the efficacy of IVIg-mediated neutrophil killing was enhanced by the proinflammatory cytokines granulocyte/macrophage colony-stimulating factor (GM-CSF) and interferon-gamma (IFN-gamma), and this additional cell death required reactive oxygen species (ROSs) but not caspases. Anti- Siglec-9 autoantibody-depleted IVIg failed to induce this caspase-independent neutrophil death. These findings contribute to our understanding of how IVIg preparations exert their immunoregulatory effects under pathologic conditions and may provide a possible explanation for the neutropenia that is sometimes seen in association with IVIg therapy.
Resumo:
BACKGROUND: It is known that endometriosis is an inflammatory disease and those patients seem to have lower pregnancy rates. The aim of the study was to investigate the concentrations of chemokines and proinflammatory cytokines in the follicular fluid of patients with and without endometriosis. METHODS: Follicular aspiration, recovering follicular fluid during assisted reproductive treatment, follicular fluid storage and analysis of chemokines and proinflammatory cytokines were carried out. Tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6, interleukin-8, interleukin-15, leukemia inhibitory factor, epithelial neutrophil-activating peptide 78, regulated upon activation, normal T-cell expressed and secreted, and growth-regulated oncogene-alpha were analyzed in the follicular fluid and compared between women with (n =47) and without endometriosis (n = 279). RESULTS: The above cytokines were detected in the follicular fluid samples. Epithelial neutrophil-activating peptide 78 levels were significantly higher in follicular fluid from endometriosis patients than from controls (p = 0.008). Increases (to twice the control level) were also observed for tumor necrosis factor-alpha and for interleukin-6. CONCLUSIONS: Increased follicular fluid levels of epithelial neutrophil-activating peptide 78, tumor necrosis factor-alpha and interleukin-6 indicate that these cytokines may influence oocyte quality and fecundability of women with endometriosis by deteriorating the microenvironment in the human follicle.
Resumo:
Cortisol availability is controlled by 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which inactivates cortisol in cortisone, unable to bind to the glucocorticoid receptor. The 11beta-HSD2 enzyme activity limits either intracellular cortisol concentrations or within the uteroplacental compartment the transfer of cortisol into the fetal circulation. Mechanisms, by which 11beta-HSD2 activity is controlled, include transcriptional control, posttranscriptional modifications of 11beta-HSD2 transcript half-life, epigenetic regulation via methylation of genomic DNA and direct inhibition of enzymatic activity. The 11beta-HSD2 expression and activity is reduced in preeclampsia and the enzyme activity correlates with factors associated with increased vasoconstriction, such as an increased angiotensin II receptor subtype 1 expression, and notably fetal growth. Numerous signals such as proinflammatory cytokines known to be present and/or elevated in preeclampsia regulate 11beta-HSD2 activity. Shallow trophoblast invasion with the resulting hypoxemia seems to critically reduce available 11beta-HSD2 activity. A positive feedback exists as activated glucocorticoid receptors do enhance 11beta-HSD2 mRNA transcription and mRNA stability. No data are currently available on pregnancy and either epigenetic or direct effects on the activity of the translated enzyme.
Resumo:
Objectives: The goal of the present study was to elucidate the contribution of the newly recognized virulence factor choline to the pathogenesis of Streptococcus pneumoniae in an animal model of meningitis. Results: The choline containing strain D39Cho(-) and its isogenic choline-free derivative D39Cho(-)licA64 -each expressing the capsule polysaccharide 2 - were introduced intracisternally at an inoculum size of 10(3) CFU into 11 days old Wistar rats. During the first 8 h post infection both strains multiplied and stimulated a similar immune response that involved expression of high levels of proinflammatory cytokines, the matrix metalloproteinase 9 (MMP-9), IL-10, and the influx of white blood cells into the CSF. Virtually identical immune response was also elicited by intracisternal inoculation of 10(7) CFU equivalents of either choline-containing or choline-free cell walls. At sampling times past 8 h strain D39Cho(-) continued to replicate accompanied by an intense inflammatory response and strong granulocytic pleiocytosis. Animals infected with D39Cho(-) died within 20 h and histopathology revealed brain damage in the cerebral cortex and hippocampus. In contrast, the initial immune response generated by the choline-free strain D39Cho(-)licA64 began to decline after the first 8 h accompanied by elimination of the bacteria from the CSF in parallel with a strong WBC response peaking at 8 h after infection. All animals survived and there was no evidence for brain damage. Conclusion: Choline in the cell wall is essential for pneumococci to remain highly virulent and survive within the host and establish pneumococcal meningitis.
Resumo:
The prevalence of periodontitis and cardiovascular disease (CVD) is high. A mixed infectious biofilm etiology of periodontitis is known but not fully established in CVD. Cofactors; smoking habits, stress, ethnicity, genetics, socioeconomics and age contribute to both diseases. The objectives of this report are to summarize factors in regards to CVD and periodontitis that are clinically relevant. The hypothesis behind a relationship between the two conditions can be founded in (I) shared infections etiology, (II) shared inflammatory response, (III) epidemiological and case-control studies, and (IV) periodontal studies demonstrating improvements of CVD markers. Streptococcus species in the S. mitis group, and S. anginosus group have been identified in periodontitis and are known as pathogens in endocarditis possibly transported from the oral cavity to the heart through bacteremia during dental therapies, and tooth brushing. Other periodontal bacteria such as Porphyromonas gingivalis, Fusobacterium nucleatum and Parvimonas micra are beta-lactamase producing and may contribute to antibiotic resistance (extended spectrum beta-lactamases). Other bacteria in CVD and periodontitis include Staphylococcus aureus, and Pseudomonas aeruginosa. Chlamydia pneumoniae and P. gingivalis lipopolyysaccharide capsels share homology and induce heat-shock protein activity and a cascade of proinflammatory cytokines. Associations between periodontitis and CVD have been presented in many studies when controlling for confounders. Other studies have demonstrated that periodontal therapies increase brachial artery flow rate and reduce serum inflammatory cytokine levels. Thus, physicians caring for subjects at CVD risk should consult with dentists/periodontists. Dentists must improve their medical knowledge and also learn to consult with physicians when treating patients at CVD risk.