18 resultados para Process Modelling, Viewpoint Modelling, Process Management
Resumo:
IT has turned out to be a key factor for the purposes of gaining maturity in Business Process Management (BPM). This book presents a worldwide investigation that was conducted among companies from the ‘Forbes Global 2000’ list to explore the current usage of software throughout the BPM life cycle and to identify the companies’ requirements concerning process modelling. The responses from 130 companies indicate that, at the present time, it is mainly software for process description and analysis that is required, while process execution is supported by general software such as databases, ERP systems and office tools. The resulting complex system landscapes give rise to distinct requirements for BPM software, while the process modelling requirements can be equally satisfied by the most common languages (BPMN, UML, EPC).
On degeneracy and invariances of random fields paths with applications in Gaussian process modelling
Resumo:
We study pathwise invariances and degeneracies of random fields with motivating applications in Gaussian process modelling. The key idea is that a number of structural properties one may wish to impose a priori on functions boil down to degeneracy properties under well-chosen linear operators. We first show in a second order set-up that almost sure degeneracy of random field paths under some class of linear operators defined in terms of signed measures can be controlled through the two first moments. A special focus is then put on the Gaussian case, where these results are revisited and extended to further linear operators thanks to state-of-the-art representations. Several degeneracy properties are tackled, including random fields with symmetric paths, centred paths, harmonic paths, or sparse paths. The proposed approach delivers a number of promising results and perspectives in Gaussian process modelling. In a first numerical experiment, it is shown that dedicated kernels can be used to infer an axis of symmetry. Our second numerical experiment deals with conditional simulations of a solution to the heat equation, and it is found that adapted kernels notably enable improved predictions of non-linear functionals of the field such as its maximum.
Resumo:
Background Pelvic inflammatory disease (PID) results from the ascending spread of microorganisms from the vagina and endocervix to the upper genital tract. PID can lead to infertility, ectopic pregnancy and chronic pelvic pain. The timing of development of PID after the sexually transmitted bacterial infection Chlamydia trachomatis (chlamydia) might affect the impact of screening interventions, but is currently unknown. This study investigates three hypothetical processes for the timing of progression: at the start, at the end, or throughout the duration of chlamydia infection. Methods We develop a compartmental model that describes the trial structure of a published randomised controlled trial (RCT) and allows each of the three processes to be examined using the same model structure. The RCT estimated the effect of a single chlamydia screening test on the cumulative incidence of PID up to one year later. The fraction of chlamydia infected women who progress to PID is obtained for each hypothetical process by the maximum likelihood method using the results of the RCT. Results The predicted cumulative incidence of PID cases from all causes after one year depends on the fraction of chlamydia infected women that progresses to PID and on the type of progression. Progression at a constant rate from a chlamydia infection to PID or at the end of the infection was compatible with the findings of the RCT. The corresponding estimated fraction of chlamydia infected women that develops PID is 10% (95% confidence interval 7-13%) in both processes. Conclusions The findings of this study suggest that clinical PID can occur throughout the course of a chlamydia infection, which will leave a window of opportunity for screening to prevent PID.
Resumo:
This paper describes the Model for Outcome Classification in Health Promotion and Prevention adopted by Health Promotion Switzerland (SMOC, Swiss Model for Outcome Classification) and the process of its development. The context and method of model development, and the aim and objectives of the model are outlined. Preliminary experience with application of the model in evaluation planning and situation analysis is reported. On the basis of an extensive literature search, the model is situated within the wider international context of similar efforts to meet the challenge of developing tools to assess systematically the activities of health promotion and prevention.
Resumo:
Objective: Compensatory health beliefs (CHBs), defined as beliefs that healthy behaviours can compensate for unhealthy behaviours, may be one possible factor hindering people in adopting a healthier lifestyle. This study examined the contribution of CHBs to the prediction of adolescents’ physical activity within the theoretical framework of the Health Action Process Approach (HAPA). Design: The study followed a prospective survey design with assessments at baseline (T1) and two weeks later (T2). Method: Questionnaire data on physical activity, HAPA variables and CHBs were obtained twice from 430 adolescents of four different Swiss schools. Multilevel modelling was applied. Results: CHBs added significantly to the prediction of intentions and change in intentions, in that higher CHBs were associated with lower intentions to be physically active at T2 and a reduction in intentions from T1 to T2. No effect of CHBs emerged for the prediction of self-reported levels of physical activity at T2 and change in physical activity from T1 to T2. Conclusion: Findings emphasise the relevance of examining CHBs in the context of an established health behaviour change model and suggest that CHBs are of particular importance in the process of intention formation.
Resumo:
Recent flood events in Switzerland and Western Austria in 2005 were characterised by an increase in impacts and associated losses due to the transport of woody material. As a consequence, protection measures and bridges suffered considerable damages. Furthermore, cross-sectional obstructions due to woody material entrapment caused unexpected flood plain inundations resulting in severe damage to elements at risk. Until now, the transport of woody material is neither sufficiently taken into account nor systematically considered, leading to prediction inaccuracies during the procedure of hazard mapping. To close this gap, we propose a modelling approach that (1) allows the estimation of woody material recruitment from wood-covered banks and flood plains; (2) allows the evaluation of the disposition for woody material entrainment and transport to selected critical configurations along the stream and that (3) enables the delineation of hazard process patterns at these critical configurations. Results from a case study suggest the general applicability of the concept. This contribution to woody material transport analysis refines flood hazard assessments due to the consideration of woody material transport scenarios.
Resumo:
The presented approach describes a model for a rule-based expert system calculating the temporal variability of the release of wet snow avalanches, using the assumption of avalanche triggering without the loading of new snow. The knowledge base of the model is created by using investigations on the system behaviour of wet snow avalanches in the Italian Ortles Alps, and is represented by a fuzzy logic rule-base. Input parameters of the expert system are numerical and linguistic variables, measurable meteorological and topographical factors and observable characteristics of the snow cover. Output of the inference method is the quantified release disposition for wet snow avalanches. Combining topographical parameters and the spatial interpolation of the calculated release disposition a hazard index map is dynamically generated. Furthermore, the spatial and temporal variability of damage potential on roads exposed to wet snow avalanches can be quantified, expressed by the number of persons at risk. The application of the rule base to the available data in the study area generated plausible results. The study demonstrates the potential for the application of expert systems and fuzzy logic in the field of natural hazard monitoring and risk management.