30 resultados para Primary energy source uncertainty
Resumo:
The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of root s = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K-s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5 % for central isolated hadrons and 1-3 % for the final calorimeter jet energy scale.
Resumo:
Amino acid transporters are crucial for parasite survival since the cellular metabolism of parasitic protozoa depends on the uptake of exogenous amino acids. Amino acid transporters are also of high pharmacological relevance because they may mediate uptake of toxic amino acid analogues. In the present study we show that the eflornithine transporter AAT6 from Trypanosoma brucei (TbAAT6) mediates growth on neutral amino acids when expressed in Saccharomyces cerevisiae mutants. The transport was electrogenic and further analysed in Xenopus laevis oocytes. Neutral amino acids, proline analogues, eflornithine and acivicin induced inward currents. For proline, glycine and tryptophan the apparent affinities and maximal transport rates increased with more negative membrane potentials. Proline-induced currents were dependent on pH, but not on sodium. Although proline represents the primary energy source of T. brucei in the tsetse fly, down-regulation of TbAAT6-expression by RNAi showed that in culture TbAAT6 is not essential for growth of procyclic form trypanosomes in the presence of glucose or proline as energy source. TbAAT6-RNAi lines of both bloodstream and procyclic form trypanosomes showed reduced susceptibility to eflornithine, whereas the sensitivity to acivicin remained unchanged, indicating that acivicin enters the cell by more than one transporter
Resumo:
PLACENTAL GLUCOSE TRANSPORTER (GLUT)-1 REGULATION IN PREECLAMPSIA Camilla Marini a,b, Benjamin P. Lüscher a,b, Marianne J€orger-Messerli a,b, Ruth Sager a,b, Xiao Huang c, Jürg Gertsch c, Matthias A. Hediger c, Christiane Albrecht c, Marc U. Baumann a,c, Daniel V. Surbek a,c a Department of Obstetrics and Gynecology, University Hospital of Bern, Bern, Switzerland, Switzerland; b Department of Clinical Research, University of Bern, Bern, Switzerland, Switzerland; c Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland, Switzerland Objectives: Glucose is a primary energy source for the fetus. The absence of significant gluconeogenesis in the fetus means that the fetal up-take of this vital nutrient is dependent on maternal supply and subsequent transplacental transport. Altered expression and/or function of placental transporters may affect the intrauterine environment and could compromise fetal and mother well-being. We speculated that pre-eclampsia (PE) impairs the placental glucose transport system. Methods: Placentae were obtained after elective caesarean sections following normal pregnancies and pre-eclamptic pregnancies. Syncytial basal membrane (BM) and apical microvillus membrane (MVM) fractions were prepared using differential ultra-centrifugation and magnesium precipitation. Protein expression was assessed by western blot analysis. mRNA levels in whole villous tissue lysate were quantified by real-time PCR. To assess glucose transport activity a radiolabeled substrate up-take assay and a transepithelial transport model using primary cytotrophoblasts were established. Results: GLUT1 mRNA expression was not changed in PE when compared to control, whereas protein expression was significantly down-regulated. Glucose up-take into syncytial microvesicles was reduced in PE compared to control. In a transepithelial transport model, phloretinmediated inhibition of GLUT1 at the apical side of primary cytotrophoblasts showed a 44% of reduction of transepithelial glucose transport at IC50. Conclusions: GLUT1 is down-regulated on protein and functional level in PE compared to control. Altering glucose transport activity by inhibition of apical GLUT-1 indicates that transplacental glucose transport might be regulated on the apical side of the syncytiotrophoblast. These results might help to understand better the regulation of GLUT1 transporter and maybe in future to develop preventive strategies to modulate the fetal programming and thereby reduce the incidence of disease for both the mother and her child later in life.
Resumo:
Detailed knowledge of the characteristics of the radiation field shaped by a multileaf collimator (MLC) is essential in intensity modulated radiotherapy (IMRT). A previously developed multiple source model (MSM) for a 6 MV beam was extended to a 15 MV beam and supplemented with an accurate model of an 80-leaf dynamic MLC. Using the supplemented MSM and the MC code GEANT, lateral dose distributions were calculated in a water phantom and a portal water phantom. A field which is normally used for the validation of the step and shoot technique and a field from a realistic IMRT treatment plan delivered with dynamic MLC are investigated. To assess possible spectral changes caused by the modulation of beam intensity by an MLC, the energy spectra in five portal planes were calculated for moving slits of different widths. The extension of the MSM to 15 MV was validated by analysing energy fluences, depth doses and dose profiles. In addition, the MC-calculated primary energy spectrum was verified with an energy spectrum which was reconstructed from transmission measurements. MC-calculated dose profiles using the MSM for the step and shoot case and for the dynamic MLC case are in very good agreement with the measured data from film dosimetry. The investigation of a 13 cm wide field shows an increase in mean photon energy of up to 16% for the 0.25 cm slit compared to the open beam for 6 MV and of up to 6% for 15 MV, respectively. In conclusion, the MSM supplemented with the dynamic MLC has proven to be a powerful tool for investigational and benchmarking purposes or even for dose calculations in IMRT.
Resumo:
A multiple source model (MSM) for the 6 MV beam of a Varian Clinac 2300 C/D was developed by simulating radiation transport through the accelerator head for a set of square fields using the GEANT Monte Carlo (MC) code. The corresponding phase space (PS) data enabled the characterization of 12 sources representing the main components of the beam defining system. By parametrizing the source characteristics and by evaluating the dependence of the parameters on field size, it was possible to extend the validity of the model to arbitrary rectangular fields which include the central 3 x 3 cm2 field without additional precalculated PS data. Finally, a sampling procedure was developed in order to reproduce the PS data. To validate the MSM, the fluence, energy fluence and mean energy distributions determined from the original and the reproduced PS data were compared and showed very good agreement. In addition, the MC calculated primary energy spectrum was verified by an energy spectrum derived from transmission measurements. Comparisons of MC calculated depth dose curves and profiles, using original and PS data reproduced by the MSM, agree within 1% and 1 mm. Deviations from measured dose distributions are within 1.5% and 1 mm. However, the real beam leads to some larger deviations outside the geometrical beam area for large fields. Calculated output factors in 10 cm water depth agree within 1.5% with experimentally determined data. In conclusion, the MSM produces accurate PS data for MC photon dose calculations for the rectangular fields specified.
Resumo:
Human energy harvesting is envisioned as a remedy to the weight, the size, and the poor energy density of primary batteries in medical implants. The first implant to have necessarily raised the idea of a biological power supply was the pacemaker in the early 1960s. So far, review articles on human energy harvesting have been rather unspecific and no tribute has been given to the early role of the pacemaker and the cardiovascular system in triggering research in the field. The purpose of the present article is to provide an up-to-date review of research efforts targeting the cardiovascular system as an alternative energy source for active medical implants. To this end, a chronological survey of the last 14 most influential publications is proposed. They include experimental and/or theoretical studies based on electromagnetic, piezoelectric, or electrostatic transducers harnessing various forms of energy, such as heart motion, pressure gradients, and blood flow. Technical feasibility does not imply clinical applicability: although most of the reported devices were shown to harvest an interesting amount of energy from a physiological environment, none of them were tested in vivo for a longer period of time.Human energy harvesting is envisioned as a remedy to the weight, the size, and the poor energy density of primary batteries in medical implants. The first implant to have necessarily raised the idea of a biological power supply was the pacemaker in the early 1960s. So far, review articles on human energy harvesting have been rather unspecific and no tribute has been given to the early role of the pacemaker and the cardiovascular system in triggering research in the field. The purpose of the present article is to provide an up-to-date review of research efforts targeting the cardiovascular system as an alternative energy source for active medical implants. To this end, a chronological survey of the last 14 most influential publications is proposed. They include experimental and/or theoretical studies based on electromagnetic, piezoelectric, or electrostatic transducers harnessing various forms of energy, such as heart motion, pressure gradients, and blood flow. Technical feasibility does not imply clinical applicability: although most of the reported devices were shown to harvest an interesting amount of energy from a physiological environment, none of them were tested in vivo for a longer period of time.
Resumo:
As the complexity of active medical implants increases, the task of embedding a life-long power supply at the time of implantation becomes more challenging. A periodic renewal of the energy source is often required. Human energy harvesting is, therefore, seen as a possible remedy. In this paper, we present a novel idea to harvest energy from the pressure-driven deformation of an artery by the principle of magneto-hydrodynamics. The generator relies on a highly electrically conductive fluid accelerated perpendicularly to a magnetic field by means of an efficient lever arm mechanism. An artery with 10 mm inner diameter is chosen as a potential implantation site and its ability to drive the generator is established. Three analytical models are proposed to investigate the relevant design parameters and to determine the existence of an optimal configuration. The predicted output power reaches 65 μW according to the first two models and 135 μW according to the third model. It is found that the generator, designed as a circular structure encompassing the artery, should not exceed a total volume of 3 cm3.
Resumo:
An autonomous energy source within a human body is of key importance in the development of medical implants. This work deals with the modelling and the validation of an energy harvesting device which converts the myocardial contractions into electrical energy. The mechanism consists of a clockwork from a commercially available wrist watch. We developed a physical model which is able to predict the total amount of energy generated when applying an external excitation. For the validation of the model, a custom-made hexapod robot was used to accelerate the harvesting device along a given trajectory. We applied forward kinematics to determine the actual motion experienced by the harvesting device. The motion provides translational as well as rotational motion information for accurate simulations in three-dimensional space. The physical model could be successfully validated.
Resumo:
BACKGROUND AND OBJECTIVES: In this in vitro feasibility study we analyzed tissue fusion using bovine serum albumin (BSA) and Indocyanine green (ICG) doped polycaprolactone (PCL) scaffolds in combination with a diode laser as energy source while focusing on the influence of irradiation power and albumin concentration on the resulting tensile strength and induced tissue damage. MATERIALS AND METHODS: A porous PCL scaffold doped with either 25% or 40% (w/w) of BSA in combination with 0.1% (w/w) ICG was used to fuse rabbit aortas. Soldering energy was delivered through the vessel from the endoluminal side using a continuous wave diode laser at 808 nm via a 400 microm core fiber. Scaffold surface temperatures were analyzed with an infrared camera. Optimum parameters such as irradiation time, radiation power and temperature were determined in view of maximum tensile strength but simultaneously minimum thermally induced tissue damage. Differential scanning calorimetry (DSC) was performed to measure the influence of PCL on the denaturation temperature of BSA. RESULTS: Optimum parameter settings were found to be 60 seconds irradiation time and 1.5 W irradiation power resulting in tensile strengths of around 2,000 mN. Corresponding scaffold surface temperature was 117.4+/- 12 degrees C. Comparison of the two BSA concentration revealed that 40% BSA scaffold resulted in significant higher tensile strength compared to the 25%. At optimum parameter settings, thermal damage was restricted to the adventitia and its interface with the outermost layer of the tunica media. The DSC showed two endothermic peaks in BSA containing samples, both strongly depending on the water content and the presence of PCL and/or ICG. CONCLUSIONS: Diode laser soldering of vascular tissue using BSA-ICG-PCL-scaffolds leads to strong and reproducible tissue bonds, with vessel damage limited to the adventitia. Higher BSA content results in higher tensile strengths. The DSC-measurements showed that BSA denaturation temperature is lowered by addition of water and/or ICG-PCL.
Resumo:
Glucose (Gluc) is the main energy source for the brain. After severe head-injury energy demand is massively increased and supply is often decreased. In pilot microdialysis studies, many patients with severe head-injury had undetectable glucose concentrations, probably reflecting changes in metabolism and/or reduced supply. We therefore investigated whether patients with low ECF glucose (criterion: < 50 microM for > or = 5 hrs), LOWgluc, differ from patients with higher glucose levels (NORMALgluc) We also tested the interrelationships between other parameters such as lactate, glutamate, K+, brain O2 and CO2, ICP, CPP, and CBF in these two groups. We found that patients with low ECF glucose, LOWgluc, have significantly lower lactate concentrations than patients with "normal" glucose, NORMALgluc, levels do. Spearman correlations between glucose and most other parameters were similar in both patient groups. However, glutamate correlated positively with glucose, lactate, brain CO2 and negatively with brain O2 in the NORMALgluc patient group, whereas glutamate did not significantly correlate with any of these parameters in the LOWgluc group. There was also no correlation between outcome and the dialysate glucose. The results indicate that low ECF glucose is almost always present in severe head-injury. Moreover, the lack of correlation between low glucose and outcome, however, suggests that other energy substrates, such as lactate, are important after TBI.
Resumo:
Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.
Resumo:
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by formation and proliferation of fibroblast foci. Endothelin-1 induces lung fibroblast proliferation and contractile activity via the endothelin A (ETA) receptor. OBJECTIVE To determine whether ambrisentan, an ETA receptor-selective antagonist, reduces the rate of IPF progression. DESIGN Randomized, double-blind, placebo-controlled, event-driven trial. (ClinicalTrials.gov: NCT00768300). SETTING Academic and private hospitals. PARTICIPANTS Patients with IPF aged 40 to 80 years with minimal or no honeycombing on high-resolution computed tomography scans. INTERVENTION Ambrisentan, 10 mg/d, or placebo. MEASUREMENTS Time to disease progression, defined as death, respiratory hospitalization, or a categorical decrease in lung function. RESULTS The study was terminated after enrollment of 492 patients (75% of intended enrollment; mean duration of exposure to study medication, 34.7 weeks) because an interim analysis indicated a low likelihood of showing efficacy for the end point by the scheduled end of the study. Ambrisentan-treated patients were more likely to meet the prespecified criteria for disease progression (90 [27.4%] vs. 28 [17.2%] patients; P = 0.010; hazard ratio, 1.74 [95% CI, 1.14 to 2.66]). Lung function decline was seen in 55 (16.7%) ambrisentan-treated patients and 19 (11.7%) placebo-treated patients (P = 0.109). Respiratory hospitalizations were seen in 44 (13.4%) and 9 (5.5%) patients in the ambrisentan and placebo groups, respectively (P = 0.007). Twenty-six (7.9%) patients who received ambrisentan and 6 (3.7%) who received placebo died (P = 0.100). Thirty-two (10%) ambrisentan-treated patients and 16 (10%) placebo-treated patients had pulmonary hypertension at baseline, and analysis stratified by the presence of pulmonary hypertension revealed similar results for the primary end point. LIMITATION The study was terminated early. CONCLUSION Ambrisentan was not effective in treating IPF and may be associated with an increased risk for disease progression and respiratory hospitalizations. PRIMARY FUNDING SOURCE Gilead Sciences.
Resumo:
BACKGROUND Although well-established for suspected lower limb deep venous thrombosis, an algorithm combining a clinical decision score, d-dimer testing, and ultrasonography has not been evaluated for suspected upper extremity deep venous thrombosis (UEDVT). OBJECTIVE To assess the safety and feasibility of a new diagnostic algorithm in patients with clinically suspected UEDVT. DESIGN Diagnostic management study. (ClinicalTrials.gov: NCT01324037) SETTING: 16 hospitals in Europe and the United States. PATIENTS 406 inpatients and outpatients with suspected UEDVT. MEASUREMENTS The algorithm consisted of the sequential application of a clinical decision score, d-dimer testing, and ultrasonography. Patients were first categorized as likely or unlikely to have UEDVT; in those with an unlikely score and normal d-dimer levels, UEDVT was excluded. All other patients had (repeated) compression ultrasonography. The primary outcome was the 3-month incidence of symptomatic UEDVT and pulmonary embolism in patients with a normal diagnostic work-up. RESULTS The algorithm was feasible and completed in 390 of the 406 patients (96%). In 87 patients (21%), an unlikely score combined with normal d-dimer levels excluded UEDVT. Superficial venous thrombosis and UEDVT were diagnosed in 54 (13%) and 103 (25%) patients, respectively. All 249 patients with a normal diagnostic work-up, including those with protocol violations (n = 16), were followed for 3 months. One patient developed UEDVT during follow-up, for an overall failure rate of 0.4% (95% CI, 0.0% to 2.2%). LIMITATIONS This study was not powered to show the safety of the substrategies. d-Dimer testing was done locally. CONCLUSION The combination of a clinical decision score, d-dimer testing, and ultrasonography can safely and effectively exclude UEDVT. If confirmed by other studies, this algorithm has potential as a standard approach to suspected UEDVT. PRIMARY FUNDING SOURCE None.
Resumo:
Elevation of ketone bodies occurs frequently after parturition during negative energy balance in high yielding dairy cows. Previous studies illustrated that hyperketonemia interferes with metabolism and it is assumed that it impairs the immune response. However, a causative effect of ketone bodies could not be shown in vivo before, because spontaneous hyperketonemia comes usually along with high NEFA and low glucose concentrations. The objective was to study effects of beta-hydroxybutyrate (BHBA) infusion and an additional intramammary lipopolysaccharide (LPS) challenge on metabolism and immune response in dairy cows. Thirteen dairy cows received intravenously either a BHBA infusion (group BHBA, n=5) to induce hyperketonemia (1.7 mmol/L), or an infusion with a 0.9 % saline solution (Control, n=8) for 56 h. Infusions started at 0900 on day 1 and continue up to 1700 two days later. Two udder quarters were challenged with 200 μg Escherichia coli-LPS 48 h after the start of infusion. Blood samples were taken one week and 2 h before the start of infusions as reference samples and hourly during the infusion. Liver and mammary gland biopsies were taken one week before the start of the infusion, 48 h after the start of the infusion, and mammary tissues was additionally taken 8 h after LPS challenge (56 h after the start of infusions). Rectal temperature (RT) and somatic cell count (SCC) was measured before and 48 h after the start of infusions and hourly during LPS challenge. Blood samples were analyzed for plasma glucose, BHBA, NEFA, triglyceride, urea, insulin, glucagon, and cortisol concentration. The mRNA abundance of factors related to potential adaptations of metabolism and immune system was measured in liver and mammary tissue biopsies. Differences between blood constituents, RT, SCC, and mRNA abundance before and 48 h after the start of infusions, and differences between mRNA abundance before and after LPS challenges were tested for significance by GLM of SAS procedure with treatment as fixed effect. Area under the curve was calculated for blood variables during 48 h BHBA infusion and during the LPS challenge, and additionally for RT and SCC during the LPS challenge. Most surprisingly, both plasma glucose and glucagon concentration decreased during the 48 h of BHBA infusion (P<0.05). During the 48 h of BHBA infusion, serum amyloid A mRNA abundance in mammary gland was increased (P<0.01), and haptoglobin (Hp) mRNA abundance tended to increase in cows treated with BHBA compared to control group (P= 0.07). RT, SCC, and candidate genes related to immune response in the liver were not affected by BHBA infusion. However, during LPS challenge the expected increase of both plasma glucose and glucagon concentration was much less pronounced in the animals treated with BHBA (P<0.05) and also SCC increased much less pronounced in the animals infused with BHBA (P<0.05) than in the controls. An increased BHBA infusion rate to maintain plasma BHBA constant could not fully compensate for the decreased plasma BHBA during the LPS challenge which indicates that BHBA is used as an energy source during the immune response. In addition, BHBA infused animals showed a more pronounced increase of mRNA abundance of IL-8, IL-10, and citrate synthase in the mammary tissue of LPS challenged quarters (P<0.05) than control animals. Results demonstrate that infusion of BHBA affects metabolism through decreased plasma glucose concentration which is likely related to a decreased release of glucagon during hyperketonemia and during additional inflammation. It also affects the systemic and mammary immune response which may reflect the increased susceptibility for mastitis during spontaneous hyperketonemia. The obviously reduced gluconeogenesis in response to BHBA infusion may be a mechanism to stimulated the use of BHBA as an energy source instead of glucose, and/or to save oxaloacetate for the citric acid cycle instead of gluconeogenesis and as a consequence to reduce ketogenesis.
Resumo:
BACKGROUND Data on the association between subclinical thyroid dysfunction and fractures conflict. PURPOSE To assess the risk for hip and nonspine fractures associated with subclinical thyroid dysfunction among prospective cohorts. DATA SOURCES Search of MEDLINE and EMBASE (1946 to 16 March 2014) and reference lists of retrieved articles without language restriction. STUDY SELECTION Two physicians screened and identified prospective cohorts that measured thyroid function and followed participants to assess fracture outcomes. DATA EXTRACTION One reviewer extracted data using a standardized protocol, and another verified data. Both reviewers independently assessed methodological quality of the studies. DATA SYNTHESIS The 7 population-based cohorts of heterogeneous quality included 50,245 participants with 1966 hip and 3281 nonspine fractures. In random-effects models that included the 5 higher-quality studies, the pooled adjusted hazard ratios (HRs) of participants with subclinical hyperthyroidism versus euthyrodism were 1.38 (95% CI, 0.92 to 2.07) for hip fractures and 1.20 (CI, 0.83 to 1.72) for nonspine fractures without statistical heterogeneity (P = 0.82 and 0.52, respectively; I2= 0%). Pooled estimates for the 7 cohorts were 1.26 (CI, 0.96 to 1.65) for hip fractures and 1.16 (CI, 0.95 to 1.42) for nonspine fractures. When thyroxine recipients were excluded, the HRs for participants with subclinical hyperthyroidism were 2.16 (CI, 0.87 to 5.37) for hip fractures and 1.43 (CI, 0.73 to 2.78) for nonspine fractures. For participants with subclinical hypothyroidism, HRs from higher-quality studies were 1.12 (CI, 0.83 to 1.51) for hip fractures and 1.04 (CI, 0.76 to 1.42) for nonspine fractures (P for heterogeneity = 0.69 and 0.88, respectively; I2 = 0%). LIMITATIONS Selective reporting cannot be excluded. Adjustment for potential common confounders varied and was not adequately done across all studies. CONCLUSION Subclinical hyperthyroidism might be associated with an increased risk for hip and nonspine fractures, but additional large, high-quality studies are needed. PRIMARY FUNDING SOURCE Swiss National Science Foundation.