23 resultados para Pre-auricular approach
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
A new anterior intrapelvic approach for the surgical management of displaced acetabular fractures involving predominantly the anterior column and the quadrilateral plate is described. In order to establish five 'windows' for instrumentation, the extraperitoneal space is entered along the lateral border of the rectus abdominis muscle. This is the so-called 'Pararectus' approach. The feasibility of safe dissection and optimal instrumentation of the pelvis was assessed in five cadavers (ten hemipelves) before implementation in a series of 20 patients with a mean age of 59 years (17 to 90), of whom 17 were male. The clinical evaluation was undertaken between December 2009 and December 2010. The quality of reduction was assessed with post-operative CT scans and the occurrence of intra-operative complications was noted. In cadavers, sufficient extraperitoneal access and safe instrumentation of the pelvis were accomplished. In the patients, there was a statistically significant improvement in the reduction of the fracture (pre- versus post-operative: mean step-off 3.3 mm (sd 2.6) vs 0.1 mm (sd 0.3), p < 0.001; and mean gap 11.5 mm (sd 6.5) vs 0.8 mm (sd 1.3), p < 0.001). Lesions to the peritoneum were noted in two patients and minor vascular damage was noted in a further two patients. Multi-directional screw placement and various plate configurations were feasible in cadavers without significant retraction of soft tissues. In the treatment of acetabular fractures predominantly involving the anterior column and the quadrilateral plate, the Pararectus approach allowed anatomical restoration with minimal morbidity related to the surgical access.
Resumo:
The NIMH's new strategic plan, with its emphasis on the "4P's" (Prediction, Pre-emption, Personalization, and Populations) and biomarker-based medicine requires a radical shift in animal modeling methodology. In particular 4P's models will be non-determinant (i.e. disease severity will depend on secondary environmental and genetic factors); and validated by reverse-translation of animal homologues to human biomarkers. A powerful consequence of the biomarker approach is that different closely related disorders have a unique fingerprint of biomarkers. Animals can be validated as a highly specific model of a single disorder by matching this 'fingerprint'; or as a model of a symptom seen in multiple disorders by matching common biomarkers. Here we illustrate this approach with two Abnormal Repetitive Behaviors (ARBs) in mice: stereotypies and barbering (hair pulling). We developed animal versions of the neuropsychological biomarkers that distinguish human ARBs, and tested the fingerprint of the different mouse ARBs. As predicted, the two mouse ARBs were associated with different biomarkers. Both barbering and stereotypy could be discounted as models of OCD (even though they are widely used as such), due to the absence of limbic biomarkers which are characteristic of OCD and hence are necessary for a valid model. Conversely barbering matched the fingerprint of trichotillomania (i.e. selective deficits in set-shifting), suggesting it may be a highly specific model of this disorder. In contrast stereotypies were correlated only with a biomarker (deficits in response shifting) correlated with stereotypies in multiple disorders, suggesting that animal stereotypies model stereotypies in multiple disorders.
Resumo:
Identification of the subarachnoid space has traditionally been achieved by either a blind landmark-guided approach or using prepuncture ultrasound assistance. To assess the feasibility of performing spinal anaesthesia under real-time ultrasound guidance in routine clinical practice we conducted a single center prospective observational study among patients undergoing lower limb orthopaedic surgery. A spinal needle was inserted unassisted within the ultrasound transducer imaging plane using a paramedian approach (i.e., the operator held the transducer in one hand and the spinal needle in the other). The primary outcome measure was the success rate of CSF acquisition under real-time ultrasound guidance with CSF being located in 97 out of 100 consecutive patients within median three needle passes (IQR 1-6). CSF was not acquired in three patients. Subsequent attempts combining landmark palpation and pre-puncture ultrasound scanning resulted in successful spinal anaesthesia in two of these patients with the third patient requiring general anaesthesia. Median time from spinal needle insertion until intrathecal injection completion was 1.2 minutes (IQR 0.83-4.1) demonstrating the feasibility of this technique in routine clinical practice.
Resumo:
Diverse concepts for BVD eradication or control have been applied in several countries with varying success. Results of previous studies conducted in Switzerland have shown that the prevalence of antibody-positive animals is high and that BVDV is widespread in the country causing serious economic losses. A new approach to eradicate BVD in the cattle population in Switzerland was chosen. It consists in testing the whole Swiss cattle population for virus detection in a short period of time, without initial antibody screening. Identified persistently infected (PI) animals have to be slaughtered, and new herd infections should be avoided by movement restrictions. Ear-notches are collected using special tags for labeling the animals, and are analyzed using ELISA or rtRT-PCR methods. Confirmatory tests if needed are performed on blood samples using rtRT-PCR. The eradication program is divided into four phases: (1) Pre-pasturing phase: all young bovines going to transhumance in summer have to be negative tested before. (2) Initial phase: all non-tested bovines have to be tested. Movement restrictions are effective at the same time. (3) Calves phase: all newborn calves have to be tested. (4) Surveillance phase: several strategies will be compared using a modeling approach. After the pre-pasture phase already 595,230 animals (37% of the livestock) have been tested within four months. A prevalence of 1.1% of PIs was observed. The average age of infected animals is 403 days compared to 794 days for non-infected animals, with the oldest PI-animal being over 11 years old. On average PI-animals are slaughtered within 18 days after the last positive result. The pre-pasture phase has shown that sampling and testing a high number of animals in a short time is challenging but possible. The next phase will deal with double the number of animals in a similar time frame. The coordination between all partners as well as the collaboration of farmers is the key factor for ensuring the success of the program.
Resumo:
BACKGROUND: Lung retrieval from non-heart-beating donors (NHBD) has been introduced into clinical practice successfully. However, because of potentially deleterious effects of warm ischemia on microvascular integrity, use of NHBD lungs is limited by short tolerable time periods before preservation. Recently, improvement of NHBD graft function was demonstrated by donor pre-treatment using aerosolized Ventavis (Schering Inc., Berlin, Germany). Currently, there is no information whether additional application of this approach in reperfusion can further optimize immediate graft function. MATERIAL AND METHODS: Asystolic pigs (n = 5/group) were ventilated for 180-min of warm ischemia (groups 1-3). In groups 2 and 3, 100 microg Ventavis were aerosolized over 30-min using an ultrasonic nebulizer (Optineb). Lungs were then retrogradely preserved with Perfadex and stored for 3-h. After left lung transplantation and contralateral lung exclusion, grafts were reperfused for 6-h. Only in group 3, another dose of 100 microg Ventavis was aerosolized during the first 30-min of reperfusion. Hemodynamics, pO2/FiO2 and dynamic compliance were monitored continuously and compared to controls. Intraalveolar edema was quantified stereologically, and extravascular-lung-water-index (EVLWI) was measured. Statistics comprised ANOVA analysis with repeated measurements. RESULTS: Dynamic compliance was significantly lower in both Ventavis groups, but additional administration did not result in further improvement. Oxygenation, pulmonary hemodynamics, EVLWI and intraalveolar edema formation were comparable between groups. CONCLUSIONS: Alveolar deposition of Ventavis in NHBD lungs before preservation significantly improves dynamic lung compliance and represents an important strategy for improvement of preservation quality and expansion of warm ischemic intervals. However, additional application of this method in early reperfusion is of no benefit.
Resumo:
Spinal muscular atrophy (SMA) is a lethal hereditary disease caused by homozygous deletion/inactivation of the survival of motoneuron 1 (SMN1) gene. The nearby SMN2 gene, despite its identical coding capacity, is only an incomplete substitute, because a single nucleotide difference impairs the inclusion of its seventh exon in the messenger RNA (mRNA). This splicing defect can be corrected (transiently) by specially designed oligonucleotides. Here we have developed a more permanent correction strategy based on bifunctional U7 small nuclear RNAs (snRNAs). These carry both an antisense sequence that allows specific binding to exon 7 and a splicing enhancer sequence that will improve the recognition of the targeted exon. When expression cassettes for these RNAs are stably introduced into cells, the U7 snRNAs become incorporated into small nuclear ribonucleoprotein (snRNP) particles that will induce a durable splicing correction. We have optimized this strategy to the point that virtually all SMN2 pre-mRNA becomes correctly spliced. In fibroblasts from an SMA patient, this approach induces a prolonged restoration of SMN protein and ensures its correct localization to discrete nuclear foci (gems).
Resumo:
In several regions of the world, climate change is expected to have severe impacts on agricultural systems. Changes in land management are one way to adapt to future climatic conditions, including land-use changes and local adjustments of agricultural practices. In previous studies, options for adaptation have mostly been explored by testing alternative scenarios. Systematic explorations of land management possibilities using optimization approaches were so far mainly restricted to studies of land and resource management under constant climatic conditions. In this study, we bridge this gap and exploit the benefits of multi-objective regional optimization for identifying optimum land management adaptations to climate change. We design a multi-objective optimization routine that integrates a generic crop model and considers two climate scenarios for 2050 in a meso-scale catchment on the Swiss Central Plateau with already limited water resources. The results indicate that adaptation will be necessary in the study area to cope with a decrease in productivity by 0–10 %, an increase in soil loss by 25–35 %, and an increase in N-leaching by 30–45 %. Adaptation options identified here exhibit conflicts between productivity and environmental goals, but compromises are possible. Necessary management changes include (i) adjustments of crop shares, i.e. increasing the proportion of early harvested winter cereals at the expense of irrigated spring crops, (ii) widespread use of reduced tillage, (iii) allocation of irrigated areas to soils with low water-retention capacity at lower elevations, and (iv) conversion of some pre-alpine grasslands to croplands.
Resumo:
Despite the widespread interest in the topic and a vast international literature, very little is known about the development of intergenerational mobility in Switzerland. Based on a new harmonized database for Switzerland (comprising various surveys such as different waves of the ISSP, EVS, and the ESS), we provide a systematic account of changes in the link between social origin and destination over time (covering birth cohorts from around 1935 to 1980). We analyze effects of parental education and class on own educational achievement and social class for both men and women, using a refined variant of the methodological approach proposed by Jann and Combet (2012). The approach is based on the concept of proportional reduction of error (PRE) and features a number of advantages over more traditional approaches. For example, it provides smooth estimates of changes in social mobility that have a clear interpretation and it can easily incorporate control variables and multiple dimensions of parental characteristics. To evaluate the validity of our approach, we employ the oft-used log-multiplicative layer effect (a.k.a Unidiff) model (Xie 1992, Erikson and Goldthorpe 1992) as a benchmark. Results indicate that our approach performs well and produces qualitatively similar findings as Xie's model. For both men and women, effects of social origin initially decreased, but then, towards the end of the observation period, increased again. This u-shaped pattern, which can be observed with respect to both education and class, appears to be more pronounced for women than for men.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1]. To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5]. Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response. The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC). Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.
Resumo:
Recently, multiple studies showed that spatial and temporal features of a task-negative default mode network (DMN) (Greicius et al., 2003) are important markers for psychiatric diseases (Balsters et al., 2013). Another prominent indicator of cognitive functioning, yielding information about the mental condition in health and disease, is working memory (WM) processing. In EEG and MEG studies, frontal-midline theta power has been shown to increase with load during WM retention in healthy subjects (Brookes et al., 2011). Negative correlations between DMN activity and theta amplitude have been found during resting state (Jann et al., 2010) as well as during WM (Michels et al., 2010). Likewise, WM training resulted in higher resting state theta power as well as increased small-worldness of the resting brain (Langer et al., 2013). Further, increased fMRI connectivity between nodes of the DMN correlated with better WM performance (Hampson et al., 2006). Hence, the brain’s default state might influence it’s functioning during task. We therefore hypothesized correlations between pre-stimulus DMN activity and EEG-theta power during WM maintenance, depending on the WM load. 17 healthy subjects performed a Sternberg WM task while being measured simultaneously with EEG and fMRI. Data was recorded within a multicenter-study: 12 subjects were measured in Zurich with a 64-channels MR-compatible system (Brain Products) in a 3T Philips scanner, 5 subjects with a 96-channel MR-compatible system (Brain Products) in a 3T Siemens Scanner in Bern. The DMN components was obtained by a group BOLD-ICA approach over the full task duration (figure 1). The subject-wise dynamics were obtained by back-reconstructed onto each subject’s fMRI data and normalized to percent signal change values. The single trial pre-stimulus-DMN activation was then temporally correlated with the single trial EEG-theta (3-8 Hz) spectral power during retention intervals. This so-called covariance mapping (Jann et al., 2010) yielded the spatial distribution of the theta EEG fluctuations during retention associated with the dynamics of the pre-stimulus DMN. In line with previous findings, theta power was increased at frontal-midline electrodes in high- versus low-load conditions during early WM retention (figure 2). However, correlations of DMN with theta power resulted in primarily positive correlations in low-load conditions, while during high-load conditions negative correlations of DMN activity and theta power were observed at frontal-midline electrodes. This DMN-dependent load effect reached significance in the middle of the retention period (TANOVA, p<0.05) (figure 3). Our results show a complex and load-dependent interaction of pre-stimulus DMN activity and theta power during retention, varying over time. While at a more global, load-independent view pre-stimulus DMN activity correlated positively with theta power during retention, the correlation was inversed during certain time windows in high-load trials, meaning that in trials with enhanced pre-stimulus DMN activity theta power decreases during retention. Since both WM performance and DMN activity are markers of mental health our results could be important for further investigations of psychiatric populations.
Resumo:
The field of animal syndromic surveillance (SyS) is growing, with many systems being developed worldwide. Now is an appropriate time to share ideas and lessons learned from early SyS design and implementation. Based on our practical experience in animal health SyS, with additions from the public health and animal health SyS literature, we put forward for discussion a 6-step approach to designing SyS systems for livestock and poultry. The first step is to formalise policy and surveillance goals which are considerate of stakeholder expectations and reflect priority issues (1). Next, it is important to find consensus on national priority diseases and identify current surveillance gaps. The geographic, demographic, and temporal coverage of the system must be carefully assessed (2). A minimum dataset for SyS that includes the essential data to achieve all surveillance objectives while minimizing the amount of data collected should be defined. One can then compile an inventory of the data sources available and evaluate each using the criteria developed (3). A list of syndromes should then be produced for all data sources. Cases can be classified into syndrome classes and the data can be converted into time series (4). Based on the characteristics of the syndrome-time series, the length of historic data available and the type of outbreaks the system must detect, different aberration detection algorithms can be tested (5). Finally, it is essential to develop a minimally acceptable response protocol for each statistical signal produced (6). Important outcomes of this pre-operational phase should be building of a national network of experts and collective action and evaluation plans. While some of the more applied steps (4 and 5) are currently receiving consideration, more emphasis should be put on earlier conceptual steps by decision makers and surveillance developers (1-3).