20 resultados para Plant-derived Vaccines
Resumo:
To evaluate the efficacy of a plant-derived wound dressing, a mixture of hypericum oil (Hypericum perforatum) and neem oil (Azadirachta indica), in scalp wounds with exposed bone.
Resumo:
In traditional medicine, numerous plant preparations are used to treat inflammation both topically and systemically. Several anti-inflammatory plant extracts and a few natural product-based monosubstances have even found their way into the clinic. Unfortunately, a number of plant secondary metabolites have been shown to trigger detrimental pro-allergic immune reactions and are therefore considered to be toxic. In the phytotherapy research literature, numerous plants are also claimed to exert immunostimulatory effects. However, while the concepts of plant-derived anti-inflammatory agents and allergens are well established, the widespread notion of immunostimulatory plant natural products and their potential therapeutic use is rather obscure, often with the idea that the product is some sort of "tonic" for the immune system without actually specifying the mechanisms. In this commentary it is argued that the paradigm of oral plant immunostimulants lacks clinical evidence and may therefore be a myth, which has originated primarily from in vitro studies with plant extracts. The fact that no conclusive data on orally administered immunostimulants can be found in the scientific literature inevitably prompts us to challenge this paradigm.
Resumo:
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.
Resumo:
BACKGROUND: Eosinophilic esophagitis (EE) is often associated with concomitant atopic diseases. In children with EE in whom food allergens have been identified as causative factors, elemental and elimination diets result in an improvement or resolution of symptoms. Most adult EE patients are sensitized to aeroallergens, which cross-react with plant-derived food allergens, most commonly to grass pollen and cereals. AIMS OF THE STUDY: To investigate the clinical relevance of the sensitization to wheat and rye, and the efficacy of an allergen-specific elimination diet in adult EE patients. METHODS: Six patients (five men, one women) with permanently active EE sensitized to grass pollen and the cereals wheat and rye underwent a double-blind placebo-controlled food challenge and were kept on an elimination diet avoiding wheat and rye for 6 weeks. RESULTS: The challenge tests with wheat and rye did not provoke any EE symptoms in all patients. The elimination diet failed in reducing disease activity. Although one patient noticed an improvement of symptoms, endoscopic and histopathologic findings remained unchanged. CONCLUSIONS: In adult EE patients, sensitization to wheat and rye does not seem causative for EE. Elimination diet is not a reliable and efficient therapeutic measure in EE patients sensitized to wheat and rye. Low specific immunoglobulin-E levels to wheat and rye may be a consequence of the underlying grass pollen allergy.
Resumo:
Cancer immunotherapy has made great progress because of advances in immunology and molecular biology. Increased understanding of mechanisms by which lung cancer cells escape the immune system and recognition of key tumor antigens and immune system components involved in tumor ignorance have led to the development of a variety of lung cancer vaccines. Immunotherapy has advanced from using nonspecific immunomodulatory agents to lung cancer-specific tumor antigens and tumor cell-derived vaccines. While understanding of immune processes and malignancy has improved, there is great opportunity for further research of vaccine therapies in non-small-cell lung cancer. Herein, we review the development and evolution of early lung cancer vaccine trials.
Resumo:
Understanding past methane dynamics in arctic wetlands and lakes is crucial for estimating future methane release. Methane fluxes from lake ecosystems have increasingly been studied, yet only few reconstructions of past methane emissions from lakes are available. In this study, we develop an approach to assess changes in methane availability in lakes based on δ13C of chitinous invertebrate remains and apply this to a sediment record from a Siberian thermokarst lake. Diffusive methane fluxes from the surface of ten newly sampled Siberian lakes and seven previously studied Swedish lakes were compared to taxon-specific δ13C values of invertebrate remains from lake surface sediments to investigate whether these invertebrates assimilated 13C-depleted carbon typical for methane. Remains of chironomid larvae of the tribe Orthocladiinae that, in the study lakes, mainly assimilate plant-derived carbon had higher δ13C than other invertebrate groups. δ13C of other invertebrates such as several chironomid groups (Chironomus, Chironomini, Tanytarsini, and Tanypodinae), cladocerans (Daphnia), and ostracods were generally lower. δ13C of Chironomini and Daphnia, and to a lesser extent Tanytarsini was variable in the lakes and lower at sites with higher diffusive methane fluxes. δ13C of Chironomini, Tanytarsini, and Daphnia were correlated significantly with diffusive methane flux in the combined Siberian and Swedish dataset (r = −0.72, p = 0.001, r = −0.53, p = 0.03, and r = −0.81, p < 0.001, respectively), suggesting that δ13C in these invertebrates was affected by methane availability. In a second step, we measured δ13C of invertebrate remains from a sediment record of Lake S1, a shallow thermokarst lake in northeast Siberia. In this record, covering the past ca 1000 years, δ13C of taxa most sensitive to methane availability (Chironomini, Tanytarsini, and Daphnia) was lowest in sediments deposited from ca AD 1250 to ca AD 1500, and after AD 1970, coinciding with warmer climate as indicated by an independent local temperature record. As a consequence the offset in δ13C between methane-sensitive taxa and bulk organic matter was higher in these sections than in other parts of the core. In contrast, δ13C of other invertebrate taxa did not show this trend. Our results suggest higher methane availability in the study lake during warmer periods and that thermokarst lakes can respond dynamically in their methane output to changing environmental conditions.
Resumo:
The single-layered gut epithelium represents the primary line of defense against environmental stressors; thereby monolayer integrity and tightness are essentially required to maintain gut health and function. To date only a few plant-derived phytochemicals have been described as affecting intestinal barrier function. We investigated the impact of 28 secondary plant compounds on the barrier function of intestinal epithelial CaCo-2/TC-7 cells via transepithelial electrical resistance (TEER) measurements. Apart from genistein, the compounds that had the biggest effect in the TEER measurements were biochanin A and prunetin. These isoflavones improved barrier tightness by 36 and 60%, respectively, compared to the untreated control. Furthermore, both isoflavones significantly attenuated TNFα-dependent barrier disruption, thereby maintaining a high barrier resistance comparable to nonstressed cells. In docking analyses exploring the putative interaction with the tyrosine kinase EGFR, these novel modulators of barrier tightness showed very similar values compared to the known tyrosine kinase inhibitor genistein. Both biochanin A and prunetin were also identified as potent reducers of NF-κB and ERK activation, zonula occludens 1 tyrosine phosphorylation, and metalloproteinase-mediated shedding activity, which may account for the barrier-improving ability of these isoflavones.
Resumo:
The discovery of the interaction of plant-derived N-alkylamides (NAAs) and the mammalian endocannabinoid system (ECS) and the existence of a plant endogenous N-acylethanolamine signaling system have led to the re-evaluation of this group of compounds. Herein, the isolation of seven NAAs and the assessment of their effects on major protein targets in the ECS network are reported. Four NAAs, octadeca-2E,4E,8E,10Z,14Z-pentaene-12-ynoic acid isobutylamide (1), octadeca-2E,4E,8E,10Z,14Z-pentaene-12-ynoic acid 2'-methylbutylamide (2), hexadeca-2E,4E,9Z-triene-12,14-diynoic acid isobutylamide (3), and hexadeca-2E,4E,9,12-tetraenoic acid 2'-methylbutylamide (4), were identified from Heliopsis helianthoides var. scabra. Compounds 2-4 are new natural products, while 1 was isolated for the first time from this species. The previously described macamides, N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (5), N-benzyl-(9Z,12Z,15Z)-octadecatrienamide (6), and N-benzyl-(9Z,12Z)-octadecadienamide (7), were isolated from Lepidium meyenii (Maca). N-Methylbutylamide 4 and N-benzylamide 7 showed submicromolar and selective binding affinities for the cannabinoid CB1 receptor (Ki values of 0.31 and 0.48 μM, respectively). Notably, compound 7 also exhibited weak fatty acid amide hydrolase (FAAH) inhibition (IC50 = 4 μM) and a potent inhibition of anandamide cellular uptake (IC50 = 0.67 μM) that was stronger than the inhibition obtained with the controls OMDM-2 and UCM707. The pronounced ECS polypharmacology of compound 7 highlights the potential involvement of the arachidonoyl-mimicking 9Z,12Z double-bond system in the linoleoyl group for the overall cannabimimetic action of NAAs. This study provides additional strong evidence of the endocannabinoid substrate mimicking of plant-derived NAAs and uncovers a direct and indirect cannabimimetic action of the Peruvian Maca root.
Resumo:
In monocotyledonous plants, 1,4-benzoxazin-3-ones, also referred to as benzoxazinoids or hydroxamic acids, are one of the most important chemical barriers against herbivores. However, knowledge about their behavior after attack, mode of action and potential detoxification by specialized insects remains limited. We chose an innovative analytical approach to understand the role of maize 1,4-benzoxazin-3-ones in plant–insect interactions. By combining unbiased metabolomics screening and simultaneous measurements of living and digested plant tissue, we created a quantitative dynamic map of 1,4-benzoxazin-3-ones at the plant–insect interface. Hypotheses derived from this map were tested by specifically developed in vitro assays using purified 1,4-benzoxazin-3-ones and active extracts from mutant plants lacking 1,4-benzoxazin-3-ones. Our data show that maize plants possess a two-step defensive system that effectively fends off both the generalist Spodoptera littoralis and the specialist Spodoptera frugiperda. In the first step, upon insect attack, large quantities of 2-β-d-glucopyranosyloxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA-Glc) are formed. In the second step, after tissue disruption by the herbivores, highly unstable 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA) is released by plant-derived β-glucosidases. HDMBOA acts as a strong deterrent to both S. littoralis and S. frugiperda. Although constitutively produced 1,4-benzoxazin-3-ones such as 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) are detoxified via glycosylation by the insects, no conjugation of HDMBOA in the insect gut was found, which may explain why even the specialist S. frugiperda has not evolved immunity against this plant defense. Taken together, our results show the benefit of using a plant–insect interface approach to elucidate plant defensive processes and unravel a potent resistance mechanism in maize.
Resumo:
Essential amino acids cannot be synthesized by humans and animals. They often are limiting in plant-derived foods and determine the nutritional value of a given diet [1]. Seeds and fruits often represent the harvestable portion of plants. In order to improve the amino acid composition of these tissues, it is indispensable to understand how these substrates are transported within the plant. Amino acids result from nitrogen assimilation, which often occurs in leaves, the source tissue. They are transported via the vasculature, the xylem, and the phloem into the seeds, the so-called sink tissue, where they are stored or consumed. In seeds, several tissues are symplasmically isolated [2, 3], i.e., not connected by plasmodesmata, channels in the cell walls that enable a cytoplasmic continuum in plants [4]. Consequently, amino acids must be exported from cells into the apoplast and re-imported many times to support seed development. Several amino acid importers are known, but exporters remained elusive [5, 6]. Here, we characterize four members of the plant-specific UmamiT transporter family from Arabidopsis, related to the amino acid facilitator SIAR1 and the vacuolar auxin transporter WAT1 [7, 8]. We show that the proteins transport amino acids along their (electro)chemical potential across the plasma membrane. In seeds, they are found in tissues from which amino acids are exported. Loss-of-function mutants accumulate high levels of free amino acids in fruits and produce smaller seeds. Our results strongly suggest a crucial role for the UmamiTs in amino acid export and possibly a means to improve yield quality.
Resumo:
Our knowledge about the effect of single-tree influence areas on the physicochemical properties of the underlying mineral soil in forest ecosystems is still limited. This restricts our ability to adequately estimate future changes in soil functioning due to forest management practices. We studied the stand scale spatial variation of different soil organic matter species investigated by 13C NMR spectroscopy, lignin phenol and neutral sugar analysis under an unmanaged mountainous high-elevation Norway spruce (Picea abies L.) forest in central Europe. Multivariate geostatistical approaches were applied to relate the spatial patterns of the different soil organic matter species to topographic parameters, bulk density, oxalate- and dithionite-extractable iron, pH, and the impact of tree distribution. Soil samples were taken from the mineral top soil. Generally, the stand scale distribution patterns of different soil organic matter compounds could be divided into two groups: Those compounds, which were significantly spatially correlated with topography/altitude and those with small scale spatial pattern (range ≤ 10 m) that was closely related to tree distribution. The concentration of plant-derived soil organic matter components, such as lignin, at a given sampling point was significantly spatially related to the distance of the nearest tree (p ≤ 0.05). In contrast, the spatial distribution of mainly microbial-derived compounds (e.g. galactose and mannose) could be attributed to the dominating impact of small-scale topography and the contribution of poorly crystalline iron oxides that were significantly larger in the central depression of the study site compared to crest and slope positions. Our results demonstrate that topographic parameters dominate the distribution of overall topsoil organic carbon (OC) stocks at temperate high-elevation forest ecosystems, particularly in sloped terrain. However, trees superimpose topography-controlled OC biogeochemistry beneath their crown by releasing litter and changing soil conditions in comparison to open areas. This may lead to distinct zones with different mechanisms of soil organic matter degradation and also stabilization in forest stands.
Resumo:
Plant volatiles typically occur as a complex mixture of low-molecular weight lipophilic compounds derived from different biosynthetic pathways, and are seemingly produced as part of a defense strategy against biotic and abiotic stress, as well as contributing to various physiological functions of the producer organism. The biochemistry and molecular biology of plant volatiles is complex, and involves the interplay of several biochemical pathways and hundreds of genes. All plants are able to store and emit volatile organic compounds (VOCs), but the process shows remarkable genotypic variation and phenotypic plasticity. From a physiological standpoint, plant volatiles are involved in three critical processes, namely plant–plant interaction, the signaling between symbiotic organisms, and the attraction of pollinating insects. Their role in these ‘‘housekeeping’’ activities underlies agricultural applications that range from the search for sustainable methods for pest control to the production of flavors and fragrances. On the other hand, there is also growing evidence that VOCs are endowed with a range of biological activities in mammals, and that they represent a substantially under-exploited and still largely untapped source of novel drugs and drug leads. This review summarizes recent major developments in the study of biosynthesis, ecological functions and medicinal applications of plant VOCs.
Resumo:
Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.
Resumo:
Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.
Resumo:
Aim: Accumulating evidence indicates that species may be pre-adapted for invasion success in new ranges. In the light of increasing global nutrient accumulation, an important candidate pre-adaptation for invasiveness is the ability to grow in nutrient-rich habitats. Therefore we tested whether globally invasive species originating from Central Europe have come from more productive rather than less productive habitats. A further important candidate pre-adaptation for invasiveness is large niche width. Therefore, we also tested whether species able to grow across habitats with a wider range of productivity are more invasive. Location: Global with respect to invasiveness, and Central European with respect to origin of study species. Methods We examined whether average habitat productivity and its width across habitats are significant predictors of the success of Central European species as aliens and as weeds elsewhere in the world based on data in the Global Compendium of Weeds. The two habitat productivity measures were derived from nutrient indicator values (after Ellenberg) of accompanying species present in vegetation records of the comprehensive Czech National Phytosociological Database. In the analyses, we accounted for phylogenetic relatedness among species and for size of the native distribution ranges. Results: Species from more productive habitats and with a wider native habitat-productivity niche in Central Europe have higher alien success elsewhere in the world. Weediness of species increased with mean habitat productivity. Niche width was also an important determinant of weediness for species with their main occurrence in nutrient-poor habitats, but not for those from nutrient-rich habitats. Main conclusions: Our results indicate that Central European plant species from productive habitats and those species from nutrient-poor habitat with wide productivity-niche are pre-adapted to become invasive. These results suggest that the world-wide invasion success of many Central European species is likely to have been promoted by the global increase of resource-rich habitats.