19 resultados para Plant production
Resumo:
Alpine grasslands are an important source of fodder for the cattle of Alpine farmers. Only during the short summer season can these pastures be used for grazing. With the anticipated climate change, it is likely that plant production – and thus the fodder basis for the cattle – will be influenced. Investigating the dependence of biomass production on topoclimatic factors will allow us to better understand how anticipated climate change may influence this traditional Alpine farming system. Because small-scale topoclimatological variations of the main meteorological variables: temperature, humidity, precipitation, shortwave incoming radiation and wind speed are not easily derived from available long-term climate stations in mountainous terrain, it was our goal to investigate the topoclimatic variations over the pastures belonging to the Alp Weissenstein research station north of the Albula Pass in the eastern Swiss Alps. We present a basic assessment of current topoclimatic conditions as a site characterization for ongoing ecological climate change studies. To be able to link short-term studies with long-term climate records, we related agrometeorological measurements with those of surrounding long-term sites run by MeteoSwiss, both on valley bottoms (Davos, Samedan), and on mountain tops (Weissfluhjoch, Piz Corvatsch). We found that the Davos climate station north of the study area is most closely correlated with the local climate of Alp Weissenstein, although a much closer site (Samedan) exists on the other side of the Albula Pass. Mountain top stations, however, did not provide a convincing approximation for the climate at Alp Weissenstein. Direct comparisons of near-surface measurements from a set of 11 small weather stations distributed over the domain where cattle and sheep are grazed indicate that nocturnal minimum air temperature and minimum vapor pressure deficit are mostly governed by the altitudinal gradient, whereas daily maxima – including also wind speed – are more strongly depending on vegetation cover and less on the altitude.
Resumo:
Plant volatiles typically occur as a complex mixture of low-molecular weight lipophilic compounds derived from different biosynthetic pathways, and are seemingly produced as part of a defense strategy against biotic and abiotic stress, as well as contributing to various physiological functions of the producer organism. The biochemistry and molecular biology of plant volatiles is complex, and involves the interplay of several biochemical pathways and hundreds of genes. All plants are able to store and emit volatile organic compounds (VOCs), but the process shows remarkable genotypic variation and phenotypic plasticity. From a physiological standpoint, plant volatiles are involved in three critical processes, namely plant–plant interaction, the signaling between symbiotic organisms, and the attraction of pollinating insects. Their role in these ‘‘housekeeping’’ activities underlies agricultural applications that range from the search for sustainable methods for pest control to the production of flavors and fragrances. On the other hand, there is also growing evidence that VOCs are endowed with a range of biological activities in mammals, and that they represent a substantially under-exploited and still largely untapped source of novel drugs and drug leads. This review summarizes recent major developments in the study of biosynthesis, ecological functions and medicinal applications of plant VOCs.
Resumo:
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, majorregulatory genes and the signals that modulate these defense metabolites are vastly understudied, especiallyin important agro-economic monocot species. Here we show that products and signals derived from a singleZea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbiv-ory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substratefor the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the spe-cialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indi-cating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression ofJA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling isrequired for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to par-tially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produceGLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness toparasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic linkto the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compro-mised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence thatLOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene toagro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.
Resumo:
Many plant species have been introduced from their native ranges to new continents, but few have become naturalized or, ultimately, invasive. It has been predicted that species that do not require the presence of compatible mates and the services of pollinators for reproduction will be favored in establishment after long-distance dispersal. We tested whether this hypothesis, generally referred to as Baker's law, holds for South African species of Iridaceae ( iris family) that have been introduced in other regions for horticultural purposes. Fruit and seed production of flowers from which pollinators had been experimentally excluded was assessed for 10 pairs of species from nine different genera or subgenera. Each species pair comprised one naturalized and one nonnaturalized species, all of which are used in international horticulture. On average, species of Iridaceae that have become naturalized outside their native ranges showed a higher capacity for autonomous fruit and seed production than congeneric species that have not become naturalized. This was especially true for the naturalized species that are considered to be invasive weeds. These results provide strong evidence for the role of autonomous seed production in increasing potential invasiveness in plants.
Resumo:
Background Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. Methodology/Principal Findings In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Conclusions/Significance Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.
Resumo:
Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity- plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40% of the variation in plant species richness could be attributed to variation in biomass, K, P, and to some degree also N concentrations, in the third region only 15% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.
Resumo:
Predicting the response of species to environmental changes is a great and on-going challenge for ecologists, and this requires a more in-depth understanding of the importance of biotic interactions and the population structuration in the landscape. Using a reciprocal transplantation experiment, we tested the response of five species to an elevational gradient. This was combined to a neighbour removal treatment to test the importance of local adaptation and biotic interactions. The trait studied was performance measured as survival and biomass. Species response varied along the elevational gradient, but with no consistent pattern. Performance of species was influenced by environmental conditions occurring locally at each site, as well as by positive or negative effects of the surrounding vegetation. Indeed, we observed a shift from competition for biomass to facilitation for survival as a response to the increase in environmental stress occurring in the different sites. Unlike previous studies pointing out an increase of stress along the elevation gradient, our results supported a stress gradient related to water availability, which was not strictly parallel to the elevational gradient. For three of our species, we observed a greater biomass production for the population coming from the site where the species was dominant (central population) compared to population sampled at the limit of the distribution (marginal population). Nevertheless, we did not observe any pattern of local adaptation that could indicate adaptation of populations to a particular habitat. Altogether, our results highlighted the great ability of plant species to cope with environmental changes, with no local adaptation and great variability in response to local conditions. Our study confirms the importance of taking into account biotic interactions and population structure occurring at local scale in the prediction of communities’ responses to global environmental changes.
Resumo:
Fungal plant pathogens are common in natural communities where they affect plant physiology, plant survival, and biomass production. Conversely, pathogen transmission and infection may be regulated by plant community characteristics such as plant species diversity and functional composition that favor pathogen diversity through increases in host diversity while simultaneously reducing pathogen infection via increased variability in host density and spatial heterogeneity. Therefore, a comprehensive understanding of multi-host multi-pathogen interactions is of high significance in the context of biodiversity-ecosystem functioning. We investigated the relationship between plant diversity and aboveground obligate parasitic fungal pathogen (''pathogens'' hereafter) diversity and infection in grasslands of a long-term, large-scale, biodiversity experiment with varying plant species (1-60 species) and plant functional group diversity (1-4 groups). To estimate pathogen infection of the plant communities, we visually assessed pathogen-group presence (i.e., rusts, powdery mildews, downy mildews, smuts, and leaf-spot diseases) and overall infection levels (combining incidence and severity of each pathogen group) in 82 experimental plots on all aboveground organs of all plant species per plot during four surveys in 2006. Pathogen diversity, assessed as the cumulative number of pathogen groups on all plant species per plot, increased log-linearly with plant species diversity. However, pathogen incidence and severity, and hence overall infection, decreased with increasing plant species diversity. In addition, co-infection of plant individuals by two or more pathogen groups was less likely with increasing plant community diversity. We conclude that plant community diversity promotes pathogen-community diversity while at the same time reducing pathogen infection levels of plant individuals.
Resumo:
Many observers view Jatropha as a miracle plant that grows in harsh environments, halts land degradation and provides seeds for fuel production. This makes it particularly attractive for use in Ethiopia, where poverty levels are high and the degradation of agricultural land is widespread. In this article, we investigate the potentials and limitations of a government-initiated Jatropha project for smallholders in northeastern Ethiopia from a green economy perspective. Data are based on a 2009 household survey and interviews with key informants, as well as on a 2012 follow-up round of interviews with key informants. We conclude that the project has not contributed to a greener economy so far, but has the potential to do so in the future. To maximize Jatropha’s potential, interventions must focus mainly on smallholders and pay more attention to the entire biofuel value chain.
Resumo:
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15 % winter rainfall and −30 % summer rainfall) or ambient climate, achieving +15 % winter rainfall and −39 % summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha−1 year−1) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.
Resumo:
Enemy release is frequently posed as a main driver of invasiveness of alien species. However, an experimental multi-species test examining performance and herbivory of invasive alien, non-invasive alien and native plant species in the presence and absence of natural enemies is lacking. In a common garden experiment in Switzerland, we manipulated exposure of seven alien invasive, eight alien non-invasive and fourteen native species from six taxonomic groups to natural enemies (invertebrate herbivores), by applying a pesticide treatment under two different nutrient levels. We assessed biomass production, herbivore damage and the major herbivore taxa on plants. Across all species, plants gained significantly greater biomass under pesticide treatment. However, invasive, non-invasive and native species did not differ in their biomass response to pesticide treatment at either nutrient level. The proportion of leaves damaged on invasive species was significantly lower compared to native species, but not when compared to non-invasive species. However, the difference was lost when plant size was accounted for. There were no differences between invasive, non-invasive and native species in herbivore abundance. Our study offers little support for invertebrate herbivore release as a driver of plant invasiveness, but suggests that future enemy release studies should account for differences in plant size among species.
Resumo:
The response of montane and subalpine hay meadow plant and arthropod communities to the application of liquid manure and aerial irrigation – two novel, rapidly spreading management practices – remains poorly understood, which hampers the formulation of best practice management recommendations for both hay production and biodiversity preservation. In these nutrient-poor mountain grasslands, a moderate management regime could enhance overall conditions for biodiversity. This study experimentally assessed, at the site scale, among low-input montane and subalpine meadows, the short-term effects (1 year) of a moderate intensification (slurry fertilization: 26.7–53.3 kg N·ha−1·year−1; irrigation with sprinklers: 20 mm·week−1; singly or combined together) on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass in the inner European Alps (Valais, SW Switzerland). Results show that (1) montane and subalpine hay meadow ecological communities respond very rapidly to an intensification of management practices; (2) on a short-term basis, a moderate intensification of very low-input hay meadows has positive effects on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass; (3) vegetation structure is likely to be the key factor limiting arthropod abundance and biomass. Our ongoing experiments will in the longer term identify which level of management intensity achieves an optimal balance between biodiversity and hay production.
Resumo:
Amongst the various hypotheses that challenged to explain the coexistence of species with similar life histories, theoretical, and empirical studies suggest that spatial processes may slow down competitive exclusion and hence promote coexistence even in the absence of evident trade-offs and frequent disturbances. We investigated the effects of spatial pattern and density on the relative importance of intra- and interspecific competition in a field experiment. We hypothesized that weak competitors increased biomass and seed production within neighborhoods of conspecifics, while stronger competitors would show increased biomass and seed production within neighborhoods of heterospecifics. Seeds of four annual plant species (Capsella bursa-pastoris, Stachys annua, Stellaria media, Poa annua) were sown in two spatial patterns (aggregated vs. random) and at two densities (low vs. high) in three different species combinations (monocultures, three and four species mixtures). There was a hierarchy in biomass production among the four species and C. bursa-pastoris and S. media were among the weak competitors. Capsella and Stellaria showed increased biomass production and had more individuals in the aggregated compared to the random pattern, especially when both superior competitors (S. annua, P. annua) were present. For P. annua we observed considerable differences among species combinations and unexpected pattern effects. Our findings support the hypothesis that weak competitors increase their fitness when grown in the neighborhood of conspecifics, and suggested that for the weakest competitors the species identity is not important and all other species are best avoided through intraspecific aggregation. In addition, our data suggest that the importance of spatial pattern for the other competitors might not only depend on the position within the hierarchy but also on the identity of neighbor species, species characteristics, below ground interactions, and other nonspatial factors.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.
Resumo:
Volatile organic compounds (VOCs) released by soil microorganisms influence plant growth and pathogen resistance. Yet, very little is known about their influence on herbivores and higher trophic levels. We studied the origin and role of a major bacterial VOC, 2,3-butanediol (2,3-BD), on plant growth, pathogen and herbivore resistance, and the attraction of natural enemies in maize. One of the major contributors to 2,3-BD in the headspace of soil-grown maize seedlings was identified as Enterobacter aerogenes, an endophytic bacterium that colonizes the plants. The production of 2,3-BD by E. aerogenes rendered maize plants more resistant against the Northern corn leaf blight fungus Setosphaeria turcica. On the contrary, E. aerogenes-inoculated plants were less resistant against the caterpillar Spodoptera littoralis. The effect of 2,3-BD on the attraction of the parasitoid Cotesia marginiventris was more variable: 2,3-BD application to the headspace of the plants had no effect on the parasitoids, but application to the soil increased parasitoid attraction. Furthermore, inoculation of seeds with E. aerogenes decreased plant attractiveness, whereas inoculation of soil with a total extract of soil microbes increased parasitoid attraction, suggesting that the effect of 2,3-BD on the parasitoid is indirect and depends on the composition of the microbial community.