40 resultados para PROTEIN-CODING GENES
Resumo:
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
Resumo:
The insulin-like growth factor 2 antisense (Igf2as) gene is part of the Ins-Igf2-H19 imprinted gene cluster. The function of the paternally expressed Igf2as is still elusive. In our previous work, we showed that Igf2as transcripts were located in the cytoplasm of C2C12 mouse myoblast cells, associated with polysomes and polyadenylated suggesting that Igf2as is protein coding. In the present work, the protein coding capacity of Igf2as was investigated. We demonstrate for the first time the existence of a polypeptide translated from an Igf2as construct. Furthermore, an RNA-Seq analysis was performed using RNA prepared from skeletal muscles of newborn wild-type and ∆ DMR1-U2 mice to further elucidate the function of Igf2as transcripts. We found no evidence for a regulatory role of Igf2as in the imprinted gene cluster. Interestingly, the RNA-Seq analysis indicated that Igf2as plays a role in the energy metabolism, the cell cycle, histone acetylation and muscle contraction pathways. Our Igf2as investigations further elucidated that there are two distinct Igf2as transcripts corresponding to two putative ORFs.
Resumo:
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.
Resumo:
The parasitic protists in the genus Tritrichomonas cause significant disease in domestic cattle and cats. To assess the genetic diversity of feline and bovine isolates of Tritrichomonas foetus (Riedmüller, 1928) Wenrich and Emmerson, 1933, we used 10 different genetic regions, namely the protein coding genes of cysteine proteases 1, 2 and 4-9 (CP1, 2, 4-9) involved in the pathogenesis of the disease caused by the parasite. The cytosolic malate dehydrogenase 1 (MDH1) and internal transcribed spacer region 2 of the rDNA unit (ITS2) were included as additional markers. The gene sequences were compared with those of Tritrichomonas suis (Davaine, 1875) Morgan and Hawkins, 1948 and Tritrichomonas mobilensisCulberson et al., 1986. The study revealed 100% identity for all 10 genes among all feline isolates (=T. foetus cat genotype), 100% identity among all bovine isolates (=T. foetus cattle genotype) and a genetic distinctness of 1% between the cat and cattle genotypes of T. foetus. The cattle genotype of T. foetus was 100% identical to T. suis at nine loci (CP1, 2, 4-8, ITS2, MDH1). At CP9, three out of four T. suis isolates were identical to the T. foetus cattle genotype, while the T. suis isolate SUI-H3B sequence contained a single unique nucleotide substitution. Tritrichomonas mobilensis was 0.4% and 0.7% distinct from the cat and cattle genotypes of T. foetus, respectively. The genetic differences resulted in amino acid changes in the CP genes, most pronouncedly in CP2, potentially providing a platform for elucidation of genotype-specific host-pathogen interactions of T. foetus. On the basis of this data we judge T. suis and T. foetus to be subjective synonyms. For the first time, on objective nomenclatural grounds, the authority of T. suis is given to Davaine, 1875, rather than the commonly cited Gruby and Delafond, 1843. To maintain prevailing usage of T. foetus, we are suppressing the senior synomym T. suisDavaine, 1875 according to Article 23.9, because it has never been used as a valid name after 1899 and T. foetus is widely discussed as the cause of bovine trichomonosis. Thus bovine, feline and porcine isolates should all be given the name T. foetus. This promotes the stability of T. foetus for the veterinary and economically significant venereal parasite causing bovine trichomonosis.
Resumo:
Petunia hybrida is a popular bedding plant that has a long history as a genetic model system. We report the whole-genome sequencing and assembly of inbred derivatives of its two wild parents, P. axillaris N and P. inflata S6. The assemblies include 91.3% and 90.2% coverage of their diploid genomes (1.4 Gb; 2n = 14) containing 32,928 and 36,697 protein-coding genes, respectively. The genomes reveal that the Petunia lineage has experienced at least two rounds of hexaploidization: the older gamma event, which is shared with most Eudicots, and a more recent Solanaceae event that is shared with tomato and other solanaceous species. Transcription factors involved in the shift from bee to moth pollination reside in particularly dynamic regions of the genome, which may have been key to the remarkable diversity of floral colour patterns and pollination systems. The high-quality genome sequences will enhance the value of Petunia as a model system for research on unique biological phenomena such as small RNAs, symbiosis, self-incompatibility and circadian rhythms.
Resumo:
Eukaryotes have evolved quality control mechanisms that prevent the expression of genes in which the protein coding potential is crippled by the presence of a premature translation-termination codon (PTC). In addition to nonsense-mediated mRNA decay (NMD), a well documented posttranscriptional consequence of the presence of a PTC in an mRNA, we recently reported the transcriptional silencing of PTC-containing immunoglobulin (Ig) mu and gamma minigenes when they are stably integrated into the genome of HeLa cells. Here we demonstrate that this transcriptional silencing of PTC-containing Ig-mu constructs requires active translation of the cognate mRNA, as it is not observed under conditions where translation of the PTC-containing mRNA is inhibited through an iron-responsive element in the 5'-untranslated region. Furthermore, RNA interference-mediated depletion of the essential NMD factor Upf1 not only abolishes NMD but also reduces the extent of nonsense-mediated transcriptional gene silencing (NMTGS). Collectively, our data indicate that NMTGS and NMD are linked, relying on the same mechanism for PTC recognition, and that the NMTGS pathway branches from the NMD pathway at a step after Upf1 function.
Resumo:
Based on the detection of expressed sequence tags that are similar to known galactosyltransferase sequences, we have isolated three novel UDP-galactose:beta-N-acetylglucosamine beta1, 3-galactosyltransferase (beta3GalT) genes from a mouse genomic library. The three genes, named beta3GalT-I, -II, and -III, encode type II transmembrane proteins of 326, 422, and 331 amino acids, respectively. The three proteins constitute a distinct subfamily as they do not share any sequence identity with other eucaryotic galactosyltransferases. Also, the entire protein-coding region of the three beta3GalT genes was contained in a single exon, which contrasts with the genomic organization of the beta1,4- and alpha1, 3-galactosyltransferase genes. The three beta3GalT genes were mainly expressed in brain tissue. The expression of the full-length murine genes as recombinant baculoviruses in insect cells revealed that the beta3GalT enzymes share the same acceptor specificity for beta-linked GlcNAc, although they differ in their Km for this acceptor and the donor UDP-Gal. The identification of beta3GalT genes emphasizes the structural diversity present in the galactosyltransferase gene family.
Resumo:
BACKGROUND: Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein-coding exons. METHODS: To improve DNA diagnostics for patients with Usher syndrome, we developed a genotyping microarray based on the arrayed primer extension (APEX) method. Allele-specific oligonucleotides corresponding to all 298 Usher syndrome-associated sequence variants known to date, 76 of which are novel, were arrayed. RESULTS: Approximately half of these variants were validated using original patient DNAs, which yielded an accuracy of >98%. The efficiency of the Usher genotyping microarray was tested using DNAs from 370 unrelated European and American patients with Usher syndrome. Sequence variants were identified in 64/140 (46%) patients with Usher syndrome type I, 45/189 (24%) patients with Usher syndrome type II, 6/21 (29%) patients with Usher syndrome type III and 6/20 (30%) patients with atypical Usher syndrome. The chip also identified two novel sequence variants, c.400C>T (p.R134X) in PCDH15 and c.1606T>C (p.C536S) in USH2A. CONCLUSION: The Usher genotyping microarray is a versatile and affordable screening tool for Usher syndrome. Its efficiency will improve with the addition of novel sequence variants with minimal extra costs, making it a very useful first-pass screening tool.
Resumo:
The functions of ribosomes in translation are complex and involve different types of activities critical for decoding the genetic code, linkage of amino acids via amide bonds to form polypeptide chains, as well as the release and proper targeting of the synthesized protein. Non-protein-coding RNAs (ncRNAs) have been recognized to be crucial in establishing regulatory networks.1 However all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. The main goal of this project is to identify potential novel ncRNAs that directly bind and possibly regulate the ribosome during protein biosynthesis. To address this question we applied various stress conditions to the archaeal model organism Haloferax volcanii and deep-sequenced the ribosome-associated small ncRNA interactome. In total we identified 6.250 ncRNA candidates. Significantly, we observed the emersed presence of tRNA-derived fragments (tRFs). These tRFs have been identified in all domains of life and represent a growing, yet functionally poorly understood, class of ncRNAs. Here we present evidence that tRFs from H. volcanii directly bind to ribosomes. In the presented genomic screen of the ribosome-associated RNome a 26 residue long fragment originating from the 5’ part of valine tRNA was by far the most abundant tRF. The Val-tRF is processed in a stress- dependent manner and was found to primarily target the small ribosomal subunit in vitro and in vivo. As a consequence of ribosome binding, Val-tRF reduces protein synthesis by interfering with peptidyl transferase activity. Therefore this tRF functions as ribosome-bound small ncRNA capable of regulating gene expression in H. volcanii under environmental stress conditions probably by fine-tuning the rate of protein production.2 Currently we are investigating the binding site of this tRF on the 30S subunit in more detail.
Resumo:
Non-protein-coding RNAs are a functionally versatile class of transcripts found in all domains of life exerting their biological role at the RNA level. Recently, we demonstrated that the vault-associated RNAs (vtRNAs) were significantly up-regulated in human B cells upon Epstein-Barr virus (EBV) infection [1,2]. vtRNAs are an integral part of the vault complex, a huge and evolutionarily conserved cytoplasmic ribonucleoprotein complex. The major vault protein (MVP) is the main structural component of the complex while vtRNA accounts for only 5% of its mass. Very little is known about the function(s) of the vtRNAs or the vault complex. In particular the role and significance of the previously observed vtRNA up-regulation upon EBV infection remained unclear. We individually expressed EBV-encoded genes in B cells and found the latent membrane protein 1 (LMP1) as trigger for vtRNA up-regulation. To unravel a putative functional interconnection between vtRNA expression and EBV infection, we ectopically expressed vtRNA1-1 in human B cells and observed an improved viral establishment. Furthermore, expression of vtRNA1-1 but not of the other vtRNA paralogs protected cells from undergoing apoptosis. Knock-down of MVP had no effect on these phenotypes thus revealing the vtRNA and not the vault complex to contribute to the enhanced EBV establishment and apoptosis resistance. Mutational analysis highlighted the central domain of the vtRNA to be involved in the anti-apoptotic effect. Ongoing research aims at characterizing the target of vtRNA1-1 in the apoptotic pathway. In summary, our data reveal a crucial cellular function for the so far elusive RNA biology of the vtRNAs.
Resumo:
As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the non-protein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms (e.g. gene silencing by microRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of ncRNAs, which target the ribosome itself [Gebetsberger et al., 2012/ Pircher et al, 2014]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression of rancRNAs during different growth phases or under specific stress conditions. To investigate the biological relevance of these rancRNAs, knock-outs were generated in H. volcanii which were used for phenotypic characterization studies. The rancRNA s194 showed association with the 50S ribosomal subunit in vitro and in vivo and was capable of inhibiting peptide bond formation and seems to inhibit translation in vitro. These preliminary data for the rancRNA s194 make it an interesting candidate for further functional studies to identify the molecular mechanisms by which rancRNAs can modulate protein biosynthesis. Characterization of further rancRNA candidates are also underway.
Resumo:
Recurrent airway obstruction (RAO) in horses is the result of an interaction of genetic and environmental factors and shares many characteristics with human asthma. Many studies have suggested that the interleukin-4 receptor gene (IL4R) is associated with this disease, and a QTL region on chromosome 13 containing IL4R was previously detected in one of the two Swiss Warmblood families. We sequenced the entire IL4R gene in this family and detected 93 variants including five non-synonymous protein-coding variants. The allele distribution at these SNPs supported the previously detected QTL signal. Subsequently, we investigated IL4R mRNA expression in bronchoalveolar lavage fluid cells. During exacerbation, IL4R expression was increased in RAO-affected offspring in the implicated family, but not in the other family. These findings support that IL4R plays a role in some cases of RAO.
Experimental adaptation of wild-type canine distemper virus (CDV) to the human entry receptor CD150.
Resumo:
Canine distemper virus (CDV), a close relative of measles virus (MV), is widespread and well known for its broad host range. When the goal of measles eradication may be achieved, and when measles vaccination will be stopped, CDV might eventually cross the species barrier to humans and emerge as a new human pathogen. In order to get an impression how fast such alterations may occur, we characterized required adaptive mutations to the human entry receptors CD150 (SLAM) and nectin-4 as first step to infect human target cells. Recombinant wild-type CDV-A75/17(red) adapted quickly to growth in human H358 epithelial cells expressing human nectin-4. Sequencing of the viral attachment proteins (hemagglutinin, H, and fusion protein, F) genes revealed that no adaptive alteration was required to utilize human nectin-4. In contrast, the virus replicated only to low titres (10(2) pfu/ml) in Vero cells expressing human CD150 (Vero-hSLAM). After three passages using these cells virus was adapted to human CD150 and replicated to high titres (10(5) pfu/ml). Sequence analyses revealed that only one amino acid exchange in the H-protein at position 540 Asp→Gly (D540G) was required for functional adaptation to human CD150. Structural modelling suggests that the adaptive mutation D540G in H reflects the sequence alteration from canine to human CD150 at position 70 and 71 from Pro to Leu (P70L) and Gly to Glu (G71E), and compensates for the gain of a negative charge in the human CD150 molecule. Using this model system our data indicate that only a minimal alteration, in this case one adaptive mutation, is required for adaptation of CDV to the human entry receptors, and help to understand the molecular basis why this adaptive mutation occurs.
Resumo:
The structural and functional repertoire of small non-protein-coding RNAs (ncRNAs) is central for establishing gene regulation networks in cells and organisms. Here, we show that an mRNA-derived 18-nucleotide-long ncRNA is capable of downregulating translation in Saccharomyces cerevisiae by targeting the ribosome. This 18-mer ncRNA binds to polysomes upon salt stress and is crucial for efficient growth under hyperosmotic conditions. Although the 18-mer RNA originates from the TRM10 locus, which encodes a tRNA methyltransferase, genetic analyses revealed the 18-mer RNA nucleotide sequence, rather than the mRNA-encoded enzyme, as the translation regulator. Our data reveal the ribosome as a target for a small regulatory ncRNA and demonstrate the existence of a yet unkown mechanism of translation regulation. Ribosome-targeted small ncRNAs are found in all domains of life and represent a prevalent but so far largely unexplored class of regulatory molecules.