31 resultados para Organelles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: The effects of mechanical deformation of intact cartilage tissue on chondrocyte biosynthesis in situ have been well documented, but the mechanotransduction pathways that regulate such phenomena have not been elucidated completely. The goal of this study was to examine the effects of tissue deformation on the morphology of a range of intracellular organelles which play a major role in cell biosynthesis and metabolism. DESIGN: Using chemical fixation, high pressure freezing, and electron microscopy, we imaged chondrocytes within mechanically compressed cartilage explants at high magnification and quantitatively and qualitatively assessed changes in organelle volume and shape caused by graded levels of loading. RESULTS: Compression of the tissue caused a concomitant reduction in the volume of the extracellular matrix (ECM), chondrocyte, nucleus, rough endoplasmic reticulum, and mitochondria. Interestingly, however, the Golgi apparatus was able to resist loss of intraorganelle water and retain a portion of its volume relative to the remainder of the cell. These combined results suggest that a balance between intracellular mechanical and osmotic gradients govern the changes in shape and volume of the organelles as the tissue is compressed. CONCLUSIONS: Our results lead to the interpretive hypothesis that organelle volume changes appear to be driven mainly by osmotic interactions while shape changes are mediated by structural factors, such as cytoskeletal interactions that may be linked to extracellular matrix deformations. The observed volume and shape changes of the chondrocyte organelles and the differential behavior between organelles during tissue compression provide evidence for an important mechanotransduction pathway linking translational and post-translational events (e.g., elongation and sulfation of glycosaminoglycans (GAGs) in the Golgi) to cell deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy (literally self-eating) is a catabolic mechanism involved in the recycling and turnover of cytoplasmic constituents. Although often referred to as type II programmed cell death, autophagy is primarily a survival rather than a cell death mechanism in response to different stress stimuli. Autophagy is a process in which part of the cytoplasm or entire organelles are sequestered into double-membrane vesicles, called autophagosomes, which ultimately fuse with lysosomes to degrade their contents. Studies show that autophagy is associated with a number of pathological conditions, including cancer, infectious diseases, myopathies and neurodegenerative disorders. With respect to cancer, it has been suggested that the early stages of tumourigenesis are associated with downregulation of autophagy-related (ATG) genes. Indeed, several ATG genes display tumour suppressor function, including Beclin1, which is frequently hemizygously deleted in breast cancer cells. Conversely, in advanced stages of tumourigenesis or during anticancer therapy, autophagy may promote survival of tumour cells in adverse environmental conditions. Therefore, a thorough understanding of autophagy in different cancer types and stages is a prerequisite to determine an autophagy-activating or autophagy-inhibiting treatment strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Although the importance of autophagy for cell homeostasis and survival has long been appreciated, our understanding of how autophagy is regulated at a molecular level just recently evolved. The importance of autophagy for the quality control of proteins is underscored by the fact that many neurodegenerative and myodegenerative diseases are characterized by an increased but still insufficient autophagic activity. Similarly, if the cellular stress, leading to deoxyribonucleic acid (DNA) damage, mitochondrial damage and/or damaged proteins, does not result in sufficient autophagic repair mechanisms, cells seem to be prone to transform into tumour cells. Therefore, autophagy has multiple roles to play in the causation and prevention of human diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All preparation efforts of biological samples in electron microscopy are focused to preserve structures as close as possible to the native state. To achieve this goal with tissues, it is of advantage to have a very short time between excision and fixation. The most common approach is chemical fixation: cross-linking of the tissue samples with aldehydes followed by postfixation with osmium tetroxide. Here, the fastest approach for tissue samples is perfusion. However, the diffusion of the fixation solution from blood vessels into the depth of the tissue is still slow and does not allow an overall instant fixation of a single cell. As a result, osmotic effects become evident (swelling or shrinkage of cell organelles). Another possibility is to take a tissue sample from the experimental animal. Excision of tissue can last quite some time, which results in even more pronounced autolytic induced osmotic effects. Furthermore, the animal does not survive the procedure in most cases. Alternatively, microbiopsies are an elegant technique to rapidly excise small quantities of tissue. Some tissues, such as liver and muscle, may be obtained using a non-lethal approach. To avoid the artifacts introduced by chemical fixation, high-pressure freezing of microbiopsies (brain, liver, kidney, and muscle) is a powerful alternative to chemical fixation. Here, we describe the microbiopsy method, and high-pressure freezing/freeze-substitution (HPF/FS) as a follow-up procedure. Cryosectioning of high-pressure frozen samples is optimally preserving the ultrastructure; however, it is not considered to be a routine approach yet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spindle cell oncocytoma (SCO) is a rare, non-adenomatous tumor originating from the anterior pituitary gland. Composed of fusiform, mitochondrion-rich cells sharing several immunophenotypic and ultrastructural properties with folliculo-stellate cells (FSC), SCO has been proposed to represent a neoplastic counterpart of the latter. To date, however, SCO has failed to meet one criterion commonly used in histological-based taxonomy and diagnostics; that of recapitulating any of FSCs' morphologically defined developmental or physiological states. We describe a unique example of SCO wherein a conventional fascicular texture was seen coexisting with and organically merging into follicle-like arrangements. The sellar tumor of 2.7 × 2.6 × 2.5 cm was transphenoidally resected from a 55-year old female. Preoperative magnetic resonance imaging indicated an isointense, contrast enhancing mass with suprasellar extension. Histology showed multiple rudimentary to well-formed, follicle-like cavities on a classical spindle cell background; while all the participating cells exhibited an SCO immunophenotype, including positivity for S100 protein, vimentin, EMA, Bcl-2, and TTF-1, as well as staining with the antimitochondrial antibody 113-1. Conversely no expression of GFAP, follicular-epithelial cytokeratin, carcinoembryonic antigen, or anterior pituitary hormones was detected. Ultrastructurally, tumor cells facing follicular lumina displayed organelles of epithelial specialization, in particular surface microvilli and apical tight junctions. This constellation is felt to be reminiscent of FSCs' metaplastic transition to follicular epithelium, as observed during embryonic development and physiological renewal of the hormone-secreting parenchyma. Such finding is apt to being read as a supporting argument for SCO's descent from the FSC lineage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Central nervous system space-occupying lesions with clear-cell features encompass a nosologically heterogeneous array, ranging from reactive histiocytic proliferations to neuroepithelial or meningothelial neoplasms of various grades and to metastases. In the face of such differential diagnostic breadth, recognizing cytoplasmic lucency as part of the morphological spectrum of some low grade gliomas will directly have an impact on patient care. We describe a prevailing clear-cell change in an epileptogenic left temporal pleomorphic xanthoastrocytoma surgically resected from a 36-year-old man. Mostly subarachnoid and focally calcified, the tumor was composed of fascicles of moderately atypical spindle cells with optically lucent cytoplasm that tended to intermingle with a desmoplastic mesh of reticulin fibers. Immunohistochemically, coexpression of S100 protein, vimentin, GFAP, and CD34 was noted. Conversely, neither punctate staining for EMA nor positivity for CD68 was seen. Mitotic activity was absent, and the MIB1 labeling index was 2-3% on average. Diastase-sensitive PAS-positive granula indicated clear-cell change to proceed from glycogen storage. Electron microscopy showed tumor cell cytoplasm to be largely obliterated by non-lysosomal-bound pools of glycogen, while hardly any fat vacuole was encountered. Neither ependymal-derived organelles nor annular lamellae suggesting oligodendroglial differentiation were detected. The latter differential diagnosis was further invalidated by lack of codeletion of chromosomal regions 1p36 and 19q13 on molecular genetic testing. By significantly interfering with pattern recognition as an implicit approach in histopathology, clear-cell change in pleomorphic xanthoastrocytoma is likely to suspend its status as a "classic", and to prompt more deductive differential diagnostic strategies to exclude look-alikes, especially clear-cell ependymoma and oligodendroglioma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to achieve host cell entry, the apicomplexan parasite Neospora caninum relies on the contents of distinct organelles, named micronemes, rhoptries and dense granules, which are secreted at defined timepoints during and after host cell entry. It was shown previously that a vaccine composed of a mixture of three recombinant antigens, corresponding to the two microneme antigens NcMIC1 and NcMIC3 and the rhoptry protein NcROP2, prevented disease and limited cerebral infection and transplacental transmission in mice. In this study, we selected predicted immunogenic domains of each of these proteins and created four different chimeric antigens, with the respective domains incorporated into these chimers in different orders. Following vaccination, mice were challenged intraperitoneally with 2 × 10(6)N. caninum tachzyoites and were then carefully monitored for clinical symptoms during 4 weeks post-infection. Of the four chimeric antigens, only recNcMIC3-1-R provided complete protection against disease with 100% survivors, compared to 40-80% of survivors in the other groups. Serology did not show any clear differences in total IgG, IgG1 and IgG2a levels between the different treatment groups. Vaccination with all four chimeric variants generated an IL-4 biased cytokine expression, which then shifted to an IFN-γ-dominated response following experimental infection. Sera of recNcMIC3-1-R vaccinated mice reacted with each individual recombinant antigen, as well as with three distinct bands in Neospora extracts with similar Mr as NcMIC1, NcMIC3 and NcROP2, and exhibited distinct apical labeling in tachyzoites. These results suggest that recNcMIC3-1-R is an interesting chimeric vaccine candidate and should be followed up in subsequent studies in a fetal infection model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The liver stage of the Plasmodium parasite remains one of the most promising targets for intervention against malaria as it is clinically silent, precedes the symptomatic blood stage and represents a bottleneck in the parasite life cycle. However, many aspects of the development of the parasite during this stage are far from understood. During the liver stage, the parasite undergoes extensive replication, forming tens of thousands of infectious merozoites from each invading sporozoite. This implies a very efficient and accurate process of cytokinesis and thus also of organelle development and segregation. We have generated for the first time Plasmodium berghei double-fluorescent parasite lines, allowing visualization of the apicoplast, mitochondria and nuclei in live liver stage parasites. Using these we have seen that in parallel with nuclear division, the apicoplast and mitochondrion become two extensively branched and intertwining structures. The organelles then undergo impressive morphological and positional changes prior to cell division. To form merozoites, the parasite undergoes cytokinesis and the complex process of organelle development and segregation into the forming daughter merozoites could be analysed in detail using the newly generated transgenic parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apicomplexan parasites possess an apical complex that is composed of two secretory organelles recognized as micronemes and rhoptries. Rhoptry contents are secreted into the parasitophorous vacuole during the host cell invasion process. Several rhoptry proteins have been identified in Toxoplasma gondii and seem to be involved in host-pathogen interactions and some of them are considered to be important virulence factors. Only one rhoptry protein, NcROP2, has been identified and extensively characterized in the closely related parasite Neospora caninum, and this has showed immunoprotective properties. Thus, with the aim of increasing knowledge of the rhoptry protein repertoire in N. caninum, a subcellular fractionation of tachyzoites was performed to obtain fractions enriched for this secretory organelle. 2-D SDS-PAGE followed by MS and LC/MS-MS were applied for fraction analysis and 8 potential novel rhoptry components (NcROP1, 5, 8, 30 and NcRON2, 3, 4, 8) and several kinases, proteases and phosphatases proteins were identified with a high homology to those previously found in T. gondii. Their existence in N. caninum tachyzoites suggests their involvement in similar events or pathways that occur in T. gondii. These novel proteins may be considered as targets that could be useful in the future development of immunoprophylactic measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The histidine triad nucleotide-binding (Hint2) protein is a mitochondrial adenosine phosphoramidase expressed in liver and pancreas. Its physiological function is unknown. To elucidate the role of Hint2 in liver physiology, the Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J x 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycaemia, an increase in plasma interprandial insulin but a decrease in glucose stimulated insulin secretion and defective thermoregulation upon fasting. Leptin mRNA in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II to III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. HIF-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-CoA dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) vs. 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . Conlusions: Hint2 positively regulates mitochondrial lipid metabolism and respiration, and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins. (HEPATOLOGY 2012.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Accumulating evidence exists that autophagy also plays a major role in immunity and inflammation. Specifically, it appears that autophagy protects against infections and inflammation. Here, we review recent work performed in macrophages and neutrophils, which both represent critical phagocytes in mammalians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Familial isolated growth hormone deficiency (IGHD) is a disorder with about 5-30% of patients having affected relatives. Among those familial types, IGHD type II is an autosomal dominant form of short stature, associated in some families with mutations that result in missplicing to produce del32-71-GH, a GH peptide which cannot fold properly. The mechanism by which this mutant GH may alter the controlled secretory pathway and therefore suppress the secretion of the normal 22-kDa GH product of the normal allele is not known in detail. Previous studies have shown variance depending on cell type, transfection technique used, as well as on the method of analysis performed. AIM: The aim of our study was to analyse and compare the subcellular distribution/localization of del32-71-GH or wild-type (wt)-GH (22-kDa GH), each stably transfected into AtT-20, a mouse pituitary cell line endogenously producing ACTH, employed as the internal control for secretion assessment. METHODS: Colocalization of wt- and del32-71 mutant GH form was studied by quantitative confocal microscopy analysis. Using the immunofluorescent technique, cells were double stained for GH plus one of the following organelles: endoplasmic reticulum (ER anti-Grp94), Golgi (anti-betaCOP) or secretory granules (anti-Rab3a). In addition, GH secretion and cell viability were analysed in detail. RESULTS/CONCLUSIONS: Our results show that in AtT-20 neuroendocrine cells, in comparison to the wt-GH, the del32-71-GH has a major impact on the secretory pathway not only affecting GH but also other peptides such as ACTH. The del32-71-GH is still present at the secretory vesicles' level, albeit in reduced quantity when compared to wt-GH but, importantly, was secretion-deficient. Furthermore, while focusing on cell viability an additional finding presented that the various splice site mutations, even though leading eventually to the same end product, namely del32-71-GH, have different and specific consequences on cell viability and proliferation rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lung stereology has a long and successful tradition. From mice to men, the application of new stereological methods at several levels (alveoli, parenchymal cells, organelles, proteins) has led to new insights into normal lung architecture, parenchymal remodelling in emphysema-like pathology, alveolar type II cell hyperplasia and hypertrophy and intracellular surfactant alterations as well as distribution of surfactant proteins. The Euler number of the network of alveolar openings, estimated using physical disectors at the light microscopic level, is an unbiased and direct estimate of alveolar number. Surfactant-producing alveolar type II cells can be counted and sampled for local size estimation with physical disectors at a high magnification light microscopic level. The number of their surfactant storage organelles, lamellar bodies, can be estimated using physical disectors at the EM level. By immunoelectron microscopy, surfactant protein distribution can be analysed with the relative labelling index. Together with the well-established classical stereological methods, these design-based methods now allow for a complete quantitative phenotype analysis in lung development and disease, including the structural characterization of gene-manipulated mice, at the light and electron microscopic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of the Ca(2+) spark as an elementary event of cellular Ca(2+) signaling almost 15 years ago, the family of newly described Ca(2+) signal entities has been ever growing. While scientists working in Ca(2+) signaling may have maintained an overview over the specifics of this nomenclature, those outside the field often make the complaint that they feel hopelessly lost. With the present review we collect and summarize systematic information on the many Ca(2+) signaling events described in a variety of tissues and cells, and we emphasize why and how each of them has its own importance. Most of these signals are taking place in the cytosol of the respective cells, but several events have been recorded from intracellular organelles as well, where they may serve their own specific functions. Finally, we also try to convey an integrated view as to why cellular microdomain signaling is of fundamental biological importance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autophagy is a cellular process, in which cellular proteins and cytoplasmic organelles are degraded. It reflects the response of a cell to stress or starvation with the primary goal of cell survival. On the other hand, if the autophagic activity is too high, cell death happens, suggesting that this process requires a tight control. Autophagic cell death has often been observed under conditions, in which apoptosis is blocked. Recent studies suggest that autophagy may promote apoptosis and that Bcl-2 cannot block only apoptosis, but also autophagy and autophagic cell death. Here, we discuss recent findings regarding the interrelations between autophagy and apoptosis. In particular, we would like to draw the attention of the readers to Atg5, which exhibits, like Bcl-2, a dual function by modulating both autophagy and apoptosis.