33 resultados para ORGANOMERCAPTAN MONOLAYERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that the gating kinetics of the slow component of the delayed rectifier K(+) current (I(Ks)) contribute to postrepolarization refractoriness in isolated cardiomyocytes. However, the impact of such kinetics on arrhythmogenesis remains unknown. We surmised that expression of I(Ks) in rat cardiomyocyte monolayers contributes to wavebreak formation and facilitates fibrillatory conduction by promoting postrepolarization refractoriness. Optical mapping was performed in 44 rat ventricular myocyte monolayers infected with an adenovirus carrying the genomic sequences of KvLQT1 and minK (molecular correlates of I(Ks)) and 41 littermate controls infected with a GFP adenovirus. Repetitive bipolar stimulation was applied at increasing frequencies, starting at 1 Hz until loss of 1:1 capture or initiation of reentry. Action potential duration (APD) was significantly shorter in I(Ks)-infected monolayers than in controls at 1 to 3 Hz (P<0.05), whereas differences at higher pacing frequencies did not reach statistical significance. Stable rotors occurred in both groups, with significantly higher rotation frequencies, lower conduction velocities, and shorter action potentials in the I(Ks) group. Wavelengths in the latter were significantly shorter than in controls at all rotation frequencies. Wavebreaks leading to fibrillatory conduction occurred in 45% of the I(Ks) reentry episodes but in none of the controls. Moreover, the density of wavebreaks increased with time as long as a stable source sustained the fibrillatory activity. These results provide the first demonstration that I(Ks)-mediated postrepolarization refractoriness can promote wavebreak formation and fibrillatory conduction during pacing and sustained reentry and may have important implications in tachyarrhythmias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a voltammetric and in situ STM study of 11-ferrocenyl-1-undecanethiol (FcC11) assembled on low-index single crystal and polycrystalline gold electrodes. The influence of electrode surface structure as well as of structure defects in the self-assembled FcC11 monolayers on the electrochemical response during the oxidation and reduction of the terminal ferrocene group is explored. The nature of the redox peaks is discussed in detail. We identified the coexistence of disordered FcC11 regions with 2D patches of “locally ordered” FcC11 species. We demonstrate that close-packed domains are preferentially formed at atomically flat terraces. Increasing the defect density of the substrate surface leads to a decreasing amount of locally ordered FcC11 molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of anions on the redox behavior and structure of 11-ferrocenyl-1-undecanethiol (FcC11) monolayers (SAM) on Au(1 1 1) single crystal and Au(1 1 1-25 nm) thin film electrodes was investigated in 0.1 M solutions of HPF6, HClO4, HBF4, HNO3, and H2SO4 by cyclic voltammetry (CV) and in situ surface-enhanced infrared reflection-absorption spectroscopy (SEIRAS). We demonstrate that the FcC11 redox peaks shift toward positive potentials and broaden with increasing hydrophilicity of the anions. In situ surface-enhanced IR-spectroscopy (SEIRAS) provided direct access for the incorporation of anions into the oxidized adlayer. The coadsorption of anions is accompanied by the penetration of water molecules. The latter effect is particularly pronounced in aqueous HNO3 and H2SO4 electrolytes. The adlayer permeability increases with increasing hydrophilicity of the anions. We also found that even the neutral (reduced) FcC11 SAM is permeable for water molecules. Based on the property of interfacial water to reorient upon charge inversion, we propose a spectroscopic approach for estimating the potential of zero total charge of the FcC11-modified Au(1 1 1) electrodes in aqueous electrolytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work covers the synthesis of second-generation, ethylene glycol dendrons covalently linked to a surface anchor that contains two, three, or four catechol groups, the molecular assembly in aqueous buffer on titanium oxide surfaces, and the evaluation of the resistance of the monomolecular adlayers against nonspecific protein adsorption in contact with full blood serum. The results were compared to those of a linear poly(ethylene glycol) (PEG) analogue with the same molecular weight. The adsorption kinetics as well as resulting surface coverages were monitored by ex situ spectroscopic ellipsometry (VASE), in situ optical waveguide lightmode spectroscopy (OWLS), and quartz crystal microbalance with dissipation (QCM-D) investigations. The expected compositions of the macromolecular films were verified by X-ray photoelectron spectroscopy (XPS). The results of the adsorption study, performed in a high ionic strength ("cloud-point") buffer at room temperature, demonstrate that the adsorption kinetics increase with increasing number of catechol binding moieties and exceed the values found for the linear PEG analogue. This is attributed to the comparatively smaller and more confined molecular volume of the dendritic macromolecules in solution, the improved presentation of the catechol anchor, and/or their much lower cloud-point in the chosen buffer (close to room temperature). Interestingly, in terms of mechanistic aspects of "nonfouling" surface properties, the dendron films were found to be much stiffer and considerably less hydrated in comparison to the linear PEG brush surface, closer in their physicochemical properties to oligo(ethylene glycol) alkanethiol self-assembled monolayers than to conventional brush surfaces. Despite these differences, both types of polymer architectures at saturation coverage proved to be highly resistant toward protein adsorption. Although associated with higher synthesis costs, dendritic macromolecules are considered to be an attractive alternative to linear polymers for surface (bio)functionalization in view of their spontaneous formation of ultrathin, confluent, and nonfouling monolayers at room temperature and their outstanding ability to present functional ligands (coupled to the termini of the dendritic structure) at high surface densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of di-cationic pentamidine-analogues against Toxoplama gondii (Rh- and Me49-background) was investigated. The 72 h-growth assays showed that the arylimidamide DB750 inhibited the proliferation of tachyzoites of T. gondii Rh and T. gondii Me49 with an IC(50) of 0.11 and 0.13 muM, respectively. Pre-incubation of fibroblast monolayers with 1 muM DB750 for 12 h and subsequent culture in the absence of the drug also resulted in a pronounced inhibiton of parasite proliferation. However, upon 5-6 days of drug exposure, T. gondii tachyzoites adapted to the compound and resumed proliferation up to a concentration of 1.2 muM. Out of a set of 32 di-cationic compounds screened for in vitro activity against T. gondii, the arylimidamide DB745, exhibiting an IC(50) of 0.03 muM and favourable selective toxicity was chosen for further studies. DB745 also inhibited the proliferation of DB750-adapted T. gondii (IC(50)=0.07 muM). In contrast to DB750, DB745 also had a profound negative impact on extracellular non-adapted T. gondii tachyzoites, but not on DB750-adapted T. gondii. Adaptation of T. gondii to DB745 (up to a concentration of 0.46 muM) was much more difficult to achieve and feasible only over a period of 110 days. In cultures infected with DB750-adapted T. gondii seemingly intact parasites could occasionally be detected by TEM. This illustrates the astonishing capacity of T. gondii tachyzoites to adapt to environmental changes, at least under in vitro conditions, and suggests that DB745 could be an interesting drug candidate for further assessments in appropriate in vivo models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immature dendritic cells (DC) reside in tissues where they initiate immune responses by taking up foreign antigens. Since DC have a limited tissue half-life, the DC pool in tissues has to be replenished constantly. This implies that precursor/immature DC must be able to cross non-activated endothelium using as yet unknown mechanisms. Here we show that immature, but not mature bone marrow-derived murine DC migrate across resting endothelial monolayers in vitro. We find that endothelial intercellular adhesion molecule-2 (ICAM-2) is a major player in transendothelial migration (TEM) of immature DC, accounting for at least 41% of TEM. Surprisingly, the ICAM-2-mediated TEM was independent of beta2-integrins, the known ICAM-2 ligands, since neither blocking of beta2-integrins with antibodies nor the use of CD18-deficient DC affected the ICAM-2-specific TEM. In humans, the C-type lectin DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN) was shown to interact with ICAM-2, suggesting a similar role in mice. However, we find that none of the murine DC-SIGN homologues mDC-SIGN, murine DC-SIGN-related molecule-1 (mSIGN-R1) and mSIGN-R3 is expressed on the surface of bone marrow-derived mouse DC. Taken together, this study shows that ICAM-2 strongly supports transmigration of immature DC across resting endothelium by interacting with ligands that are distinct from beta2-integrins and DC-SIGN homologues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar wound repair in vitro was determined using an epithelial wound repair model with HGF-transfected A549 alveolar epithelial cells. Electroporation-mediated, nonviral gene transfer of HGF in vivo was performed 7 days after bleomycin-induced lung injury in the rat. Alveolar epithelial repair in vitro was increased after transfection of wounded epithelial monolayers with a plasmid encoding human HGF, pCikhHGF [human HGF (hHGF) gene expressed from the cytomegalovirus (CMV) immediate-early promoter and enhancer] compared with medium control. Electroporation-mediated in vivo HGF gene transfer using pCikhHGF 7 days after intratracheal bleomycin reduced pulmonary fibrosis as assessed by histology and hydroxyproline determination 14 days after bleomycin compared with controls treated with the same vector not containing the HGF sequence (pCik). Lung epithelial cell proliferation was increased and apoptosis reduced in hHGF-treated lungs compared with controls, suggesting increased alveolar epithelial repair in vivo. In addition, profibrotic transforming growth factor-beta1 (TGF-beta1) was decreased in hHGF-treated lungs, indicating an involvement of TGF-beta1 in hHGF-induced reduction of lung fibrosis. In conclusion, electroporation-mediated gene transfer of hHGF decreases bleomycin-induced pulmonary fibrosis, possibly by increasing alveolar epithelial cell proliferation and reducing apoptosis, resulting in improved alveolar wound repair.