121 resultados para Neutrophil


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute promyelocytic leukaemia (APL) patients are successfully treated with all-trans retinoic acid (ATRA). However, concurrent chemotherapy is still necessary and less toxic therapeutic approaches are needed. Earlier studies suggested that in haematopoietic neoplasms, the green tea polyphenol epigallocatechin-3-gallate (EGCG) induces cell death without adversely affecting healthy cells. We aimed at deciphering the molecular mechanism of EGCG-induced cell death in acute myeloid leukaemia (AML). A significant increase of death-associated protein kinase 2 (DAPK2) levels was found in AML cells upon EGCG treatment paralleled by increased cell death that was significantly reduced upon silencing of DAPK2. Moreover, combined ATRA and EGCG treatment resulted in cooperative DAPK2 induction and potentiated differentiation. EGCG toxicity of primary AML blasts correlated with 67 kDa laminin receptor (67LR) expression. Pretreatment of AML cells with ATRA, causing downregulation of 67LR, rendered these cells resistant to EGCG-mediated cell death. In summary, it was found that (i) DAPK2 is essential for EGCG-induced cell death in AML cells, (ii) ATRA and EGCG cotreatment significantly boosted neutrophil differentiation, and 67LR expression correlates with susceptibility of AML cells to EGCG. We thus suggest that EGCG, by selectively targeting leukaemic cells, may improve differentiation therapies for APL and chemotherapy for other AML subtypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of epithelial neutrophil activating peptide-78 (NA-78) and the interleukins IL-8 and IL-6 by endometrial stromal cells is stimulated by pro-inflammatory interleukin-1 (IL-1) and tumour necrosis factor-α (TNF-α). IL-8 is suggested to play a role in the pathogenesis of endometriosis, and in these women the peritoneal fluid concentrations of ENA-78 and IL-8 are increased. TNF-α has been tested together with interferon-γ because of their cooperative stimulation of IL-6. The release of IL-8, however, is inhibited with increasing interferon levels. The aim of the study was the analysis of the production of ENA-78, IL-6 and IL-8 by cultured human endometrial stromal cells in the presence of varying concentrations of IL-1β, TNF-α, and interferon-γ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Polymorphonuclear neutrophils (PMN) play a key role in host defences against invading microorganisms but can also potentiate detrimental inflammatory reactions in case of excessive or misdirected responses. Intravenous immunoglobulins (IVIg) are used to treat patients with immune deficiencies and, at higher doses, in autoimmune, allergic and systemic inflammatory disorders. Methodology/Principal Findings We used flow cytometry to examine the effects of IVIg on PMN functions and survival, using whole-blood conditions in order to avoid artifacts due to isolation procedures. IVIg at low concentrations induced PMN activation, as reflected by decreased L-selectin and increased CD11b expression at the PMN surface, oxidative burst enhancement, and prolonged cell survival. In contrast, IVIg at higher concentrations inhibited LPS-induced CD11b degranulation and oxidative burst priming, and counteracted LPS-induced PMN lifespan prolongation. Conclusions/Significance IVIg appears to have differential, concentration-dependent effects on PMN, possibly supporting the use of IVIg as either an anti-microbial or an anti-inflammatory agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asthma is a heterogeneous inflammatory airway disorder that involves eosinophilic and noneosinophilic phenotypes. Unlike in healthy lungs, eosinophils are often present in atopic asthmatic airways, although a subpopulation of asthmatic subjects predominantly experience neutrophilic inflammation. Recently, it has been demonstrated that eosinophils and neutrophils generate bactericidal extracellular traps consisting of DNA and cytotoxic granule proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs can influence hematopoietic cell lineage commitment and aberrant expression of hematopoietic miRNAs contributes to AML pathology. We found that miR-143 and miR-145 expression is significantly repressed in primary AML patient samples as compared to neutrophils of healthy donors. Further analysis revealed impaired neutrophil differentiation of APL cells upon inhibition of miR-145 expression. Lastly, we identified p73 as transcriptional regulator of miR-143/145 during neutrophil differentiation of APL cells. Our data suggest that low miR-145 levels in APL, possibly due to aberrant expression of p73 transcription factors, contribute to the differentiation block seen in this disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-dose chemotherapy (HDC) followed by autologous stem cell transplantation (ASCT) is used for the treatment of hemato-oncologic malignancies. In this study, we measured the effect of HDC/ASCT on plasma concentrations of antiangiogenic soluble vascular endothelial growth factor receptor 1 (sVEGFR1) and of leukapheresis products (LP) and patient serum on chick chorioallantoic (CAM) angiogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SerpinB1 is a clade B serpin, or ov-serpin, found at high levels in the cytoplasm of neutrophils. SerpinB1 inhibits neutrophil serine proteases, which are important in killing microbes. When released from granules, these potent enzymes also destroy host proteins and contribute to morbidity and mortality in inflammatory diseases including emphysema, chronic obstructive pulmonary disease, cystic fibrosis, arthritis, and sepsis. Studies of serpinB1-deficient mice have established a crucial role for this serpin in Pseudomonas aeruginosa infection by preserving lung antimicrobial proteins from proteolysis and by protecting lung-recruited neutrophils from a premature death. SerpinB1⁻/⁻ mice also have a severe defect in the bone marrow reserve of mature neutrophils demonstrating a key role for serpinB1 in cellular homeostasis. Here, key methods used to generate and characterize serpinB1⁻/⁻ mice are described including intranasal inoculation, myeloperoxidase activity, flow cytometry analysis of bone marrow myeloid cells, and elastase activity. SerpinB1-knockout mice provide a model to dissect the pathogenesis of inflammatory disease characterized by protease:antiprotease imbalance and may be used to assess the efficacy of therapeutic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SerpinB1 is among the most efficient inhibitors of neutrophil serine proteases--NE, CG, and PR-3--and we investigated here its role in neutrophil development and homeostasis. We found that serpinB1 is expressed in all human bone marrow leukocytes, including stem and progenitor cells. Expression levels were highest in the neutrophil lineage and peaked at the promyelocyte stage, coincident with the production and packaging of the target proteases. Neutrophil numbers were decreased substantially in the bone marrow of serpinB1(-/-) mice. This cellular deficit was associated with an increase in serum G-CSF levels. On induction of acute pulmonary injury, neutrophils were recruited to the lungs, causing the bone marrow reserve pool to be completely exhausted in serpinB1(-/-) mice. Numbers of myeloid progenitors were normal in serpinB1(-/-) bone marrow, coincident with the absence of target protease expression at these developmental stages. Maturation arrest of serpinB1(-/-) neutrophils was excluded by the normal CFU-G growth in vitro and the normal expression in mature neutrophils of early and late differentiation markers. Normal absolute numbers of proliferating neutrophils and pulse-chase kinetic studies in vivo showed that the bone marrow deficit in serpinB1(-/-) mice was largely restricted to mature, postmitotic neutrophils. Finally, upon overnight culture, apoptosis and necrosis were greater in purified bone marrow neutrophils from serpinB1(-/-) compared with WT mice. Collectively, these findings demonstrate that serpinB1 sustains a healthy neutrophil reserve that is required in acute immune responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcription factor PU.1 is a master regulator of myeloid differentiation and function. On the other hand, only scarce information is available on PU.1-regulated genes involved in cell survival. We now identified the glycolytic enzyme hexokinase 3 (HK3), a gene with cytoprotective functions, as transcriptional target of PU.1. Interestingly, HK3 expression is highly associated with the myeloid lineage and was significantly decreased in acute myeloid leukemia patients compared with normal granulocytes. Moreover, HK3 expression was significantly lower in acute promyelocytic leukemia (APL) compared with non-APL patient samples. In line with the observations in primary APL patient samples, we observed significantly higher HK3 expression during neutrophil differentiation of APL cell lines. Moreover, knocking down PU.1 impaired HK3 induction during neutrophil differentiation. In vivo binding of PU.1 and PML-RARA to the HK3 promoter was found, and PML-RARA attenuated PU.1 activation of the HK3 promoter. Next, inhibiting HK3 in APL cell lines resulted in significantly reduced neutrophil differentiation and viability compared with control cells. Our findings strongly suggest that HK3 is: (1) directly activated by PU.1, (2) repressed by PML-RARA, and (3) functionally involved in neutrophil differentiation and cell viability of APL cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Inhibitors of apoptosis (IAPs) were intensively investigated in the context of cancer where they promote tumor growth and chemoresistence. Overexpression of the IAP BIRC6 is associated with unfavorable clinical features and negatively impacts relapse-free survival in childhood acute myeloid leukemia (AML). Currently, BIRC6 levels in adult primary AML have not been compared to the expression in normal myeloid cells. Thus, we compared for the first time BIRC6 levels in adult primary AML patient samples to normal myeloid cells and studied its regulation and function during neutrophil differentiation. Findings We found significantly lower BIRC6 levels in particular AML subtypes as compared to granulocytes from healthy donors. The lowest BIRC6 expression was found in CD34+ progenitor cells. Moreover, BIRC6 expression significantly increased during neutrophil differentiation of AML cell lines and knocking down BIRC6 in NB4 acute promyelocytic leukemia (APL) cells significantly impaired neutrophil differentiation, but not cell viability. Conclusion Together, we found an association of low BIRC6 levels with an immature myeloid phenotype and describe a function for BIRC6 in neutrophil differentiation of APL cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage-regulator autophagy modulator 1 (DRAM-1) is a lysosomal protein that positively regulates autophagy in a p53-dependent manner. We aimed at analyzing the role of DRAM-1 in granulocytic differentiation of APL cells. We observed a significant increase of DRAM-1 expression during all-trans retinoic acid (ATRA)-induced neutrophil differentiation of NB4 APL cells but not in ATRA-resistant NB4-R2 cells. Next, knocking down DRAM-1 in NB4 APL cells was sufficient to impair neutrophil differentiation. Given that DRAM-1 is a transcriptional target of p53, we tested if DRAM-1 is regulated by the p53 relative p73. Indeed, inhibiting p73 prevented neutrophil differentiation and DRAM-1 induction of NB4 cells. In conclusion, we show for the first time that p73-regulated DRAM-1 is functionally involved in neutrophil differentiation of APL cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thienopyridines can cause neutropenia and agranulocytosis. The aim of the current investigations was to compare cytotoxicity of ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel for human neutrophil granulocytes with the toxicity for lymphocytes and to investigate underlying mechanisms. For granulocytes, clopidogrel, ticlopidine, clopidogrel carboxylate and prasugrel were concentration-dependently toxic starting at 10μM. Cytotoxicity could be prevented by the myeloperoxidase inhibitor rutin, but not by the cytochrome P450 inhibitor ketoconazole. All compounds were also toxic for lymphocytes, but cytotoxicity started at 100μM and could not be prevented by rutin or ketoconazole. Granulocytes metabolized ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel, and metabolization was inhibited by rutin, but not by ketoconazole. Metabolism of these compounds by lymphocytes was much slower and could not be inhibited by ketoconazole or rutin. In neutrophils, all compounds investigated decreased the electrical potential across the inner mitochondrial membrane, were associated with cellular accumulation of ROS, mitochondrial loss of cytochrome c and induction of apoptosis starting at 10μM. All of these effects could be inhibited by rutin, but not by ketoconazole. Similar findings were obtained in lymphocytes; but compared to neutrophils, the effects were detectable only at higher concentrations and were not inhibited by rutin. In conclusion, ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel are toxic for both granulocytes and lymphocytes. In granulocytes, cytotoxicity is more accentuated than in lymphocytes and depends on metabolization by myeloperoxidase. These findings suggest a mitochondrial mechanism for cytotoxicity for both myeloperoxidase-associated metabolites and, at higher concentrations, also for the parent compounds.