34 resultados para Network Management
Resumo:
Cost-efficient operation while satisfying performance and availability guarantees in Service Level Agreements (SLAs) is a challenge for Cloud Computing, as these are potentially conflicting objectives. We present a framework for SLA management based on multi-objective optimization. The framework features a forecasting model for determining the best virtual machine-to-host allocation given the need to minimize SLA violations, energy consumption and resource wasting. A comprehensive SLA management solution is proposed that uses event processing for monitoring and enables dynamic provisioning of virtual machines onto the physical infrastructure. We validated our implementation against serveral standard heuristics and were able to show that our approach is significantly better.
Resumo:
Cloud Computing enables provisioning and distribution of highly scalable services in a reliable, on-demand and sustainable manner. However, objectives of managing enterprise distributed applications in cloud environments under Service Level Agreement (SLA) constraints lead to challenges for maintaining optimal resource control. Furthermore, conflicting objectives in management of cloud infrastructure and distributed applications might lead to violations of SLAs and inefficient use of hardware and software resources. This dissertation focusses on how SLAs can be used as an input to the cloud management system, increasing the efficiency of allocating resources, as well as that of infrastructure scaling. First, we present an extended SLA semantic model for modelling complex service-dependencies in distributed applications, and for enabling automated cloud infrastructure management operations. Second, we describe a multi-objective VM allocation algorithm for optimised resource allocation in infrastructure clouds. Third, we describe a method of discovering relations between the performance indicators of services belonging to distributed applications and then using these relations for building scaling rules that a CMS can use for automated management of VMs. Fourth, we introduce two novel VM-scaling algorithms, which optimally scale systems composed of VMs, based on given SLA performance constraints. All presented research works were implemented and tested using enterprise distributed applications.
Resumo:
With research on Wireless Sensor Networks (WSNs) becoming more and more mature in the past five years, researchers from universities all over the world have set up testbeds of wireless sensor networks, in most cases to test and evaluate the real-world behavior of developed WSN protocol mechanisms. Although these testbeds differ heavily in the employed sensor node types and the general architectural set up, they all have similar requirements with respect to management and scheduling functionalities: as every shared resource, a testbed requires a notion of users, resource reservation features, support for reprogramming and reconfiguration of the nodes, provisions to debug and remotely reset sensor nodes in case of node failures, as well as a solution for collecting and storing experimental data. The TARWIS management architecture presented in this paper targets at providing these functionalities independent from node type and node operating system. TARWIS has been designed as a re-usable management solution for research and/or educational oriented research testbeds of wireless sensor networks, relieving researchers intending to deploy a testbed from the burden to implement their own scheduling and testbed management solutions from scratch.
Resumo:
Structural characteristics of social networks have been recognized as important factors of effective natural resource governance. However, network analyses of natural resource governance most often remain static, even though governance is an inherently dynamic process. In this article, we investigate the evolution of a social network of organizational actors involved in the governance of natural resources in a regional nature park project in Switzerland. We ask how the maturation of a governance network affects bonding social capital and centralization in the network. Applying separable temporal exponential random graph modeling (STERGM), we test two hypotheses based on the risk hypothesis by Berardo and Scholz (2010) in a longitudinal setting. Results show that network dynamics clearly follow the expected trend toward generating bonding social capital but do not imply a shift toward less hierarchical and more decentralized structures over time. We investigate how these structural processes may contribute to network effectiveness over time.
Resumo:
SMARTDIAB is a platform designed to support the monitoring, management, and treatment of patients with type 1 diabetes mellitus (T1DM), by combining state-of-the-art approaches in the fields of database (DB) technologies, communications, simulation algorithms, and data mining. SMARTDIAB consists mainly of two units: 1) the patient unit (PU); and 2) the patient management unit (PMU), which communicate with each other for data exchange. The PMU can be accessed by the PU through the internet using devices, such as PCs/laptops with direct internet access or mobile phones via a Wi-Fi/General Packet Radio Service access network. The PU consists of an insulin pump for subcutaneous insulin infusion to the patient and a continuous glucose measurement system. The aforementioned devices running a user-friendly application gather patient's related information and transmit it to the PMU. The PMU consists of a diabetes data management system (DDMS), a decision support system (DSS) that provides risk assessment for long-term diabetes complications, and an insulin infusion advisory system (IIAS), which reside on a Web server. The DDMS can be accessed from both medical personnel and patients, with appropriate security access rights and front-end interfaces. The DDMS, apart from being used for data storage/retrieval, provides also advanced tools for the intelligent processing of the patient's data, supporting the physician in decision making, regarding the patient's treatment. The IIAS is used to close the loop between the insulin pump and the continuous glucose monitoring system, by providing the pump with the appropriate insulin infusion rate in order to keep the patient's glucose levels within predefined limits. The pilot version of the SMARTDIAB has already been implemented, while the platform's evaluation in clinical environment is being in progress.
Resumo:
Parasites threaten human and animal health globally. It is estimated that more than 60% of people on planet Earth carry at least one parasite, many of them several different species. Unfortunately, parasite studies suffer from duplications and inconsistencies between different investigator groups. Hence, groups need to collaborate in an integrated manner in areas including parasite control, improved therapy strategies, diagnostic and surveillance tools, and public awareness. Parasite studies will be better served if there is coordinated management of field data and samples across multidisciplinary approach plans, among academic and non-academic organizations worldwide. In this paper we report the first 'Living organism-World Molecular Network', with the cooperation of 167 parasitologists from 88 countries on all continents. This integrative approach, the 'Sarcoptes-World Molecular Network', seeks to harmonize Sarcoptes epidemiology, diagnosis, treatment, and molecular studies from all over the world, with the aim of decreasing mite infestations in humans and animals.
Resumo:
The objective of the report is to contribute towards developing international mechanisms for SLM. The report provides an overview of international actions concerned with sustainable land management, based on contributions from members of the IASUS (International Actions for the Sustainable Use of Soil) network made at the Eurosoil Symposium. It also aims to concretise possible follow-up actions. On the occasion of the ISRIC workshop “World Soils Issues and Sustainable Development” held on 10 March 2006, the creation of a World Soils Council (WSC) was initiated. The report presents in its final chapter the WSC’s proposed vision, objectives, and structure.
Resumo:
The number of large research networks and programmes engaging in knowledge production for development has grown over the past years. One of these programmes devoted to generating knowledge about and for development is National Centre of Competence in Research (NCCR) North–South, a cross-disciplinary, international development research network funded by the Swiss Agency for Development and Cooperation and the Swiss National Science Foundation. Producing relevant knowledge for development is a core goal of the programme and an important motivation for many of the participating researchers. Over the years, the researchers have made use of various spaces for exchange and instruments for co-production of knowledge by academic and non-academic development actors. In this article we explore the characteristics of co-producing and sharing knowledge in interfaces between development research, policy and NCCR North–South practice. We draw on empirical material of the NCCR North–South programme and its specific programme element of the Partnership Actions. Our goal is to make use of the concept of the interface to reflect critically about the pursued strategies and instruments applied in producing and sharing knowledge for development across boundaries.