44 resultados para Natural Product Synthesis
Resumo:
A systematic comparison has been performed of the morphology and stability of microtubules (MTs) induced by the potent microtubule-stabilizing agents (MSAs) taxol, epothilone B (Epo B), and discodermolide (DDM) under GTP-free conditions. DDM-induced tubulin polymerization occurred significantly faster than that induced by taxol and Epo B. At the same time, tubulin polymers assembled from soluble tubulin by DDM were morphologically distinct (shorter and less ordered) from those induced by either taxol or Epo B, as demonstrated by electron microscopy. Exposure of MSA-induced tubulin polymers to ultrasound revealed the DDM-based polymers to be less stable to this type of physical stress than those formed with either Epo B or taxol. Interestingly, MT assembly in the presence of both DDM and taxol appeared to produce a distinct new type of MT polymer with a mixed morphology between those of DDM- and taxol-induced structures. The observed differences in MT morphology and stability might be related, at least partly, to differences in intramicrotubular tubulin isotype distribution, as DDM showed a different pattern of beta-tubulin isotype usage in the assembly process.
Resumo:
Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet’s nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov–Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.
Resumo:
Coumarins are a large family of natural and synthetic compounds exerting different pharmacological effects, including cytotoxic, anti-inflammatory or antimicrobial. In the present communication we report the synthesis of a series of 12 diversely substituted 4-oxycoumarin derivatives including methoxy substituted 4-hydroxycoumarins, methyl, methoxy or unsubstituted 3-aryl-4-hydroxycoumarins and 4-benzyloxycoumarins and their anti-proliferative effects on breast adenocarcinoma cells (MCF-7), human promyelocytic leukemia cells (HL-60), human histiocytic lymphoma cells (U937) and mouse neuroblastoma cells (Neuro2a). The most potent bioactive molecule was the 4-hydroxy-5,7-dimethoxycoumarin (compound 1) which showed similar potency (IC(50) 0.2-2 μM) in all cancer cell lines tested. This non-natural product reveals a simple bioactive scaffold which may be exploited in further studies.
Resumo:
Epothilones are macrocyclic bacterial natural products with potent microtubule-stabilizing and antiproliferative activity. They have served as successful lead structures for the development of several clinical candidates for anticancer therapy. However, the structural diversity of this group of clinical compounds is rather limited, as their structures show little divergence from the original natural product leads. Our own research has explored the question of whether epothilones can serve as a basis for the development of new structural scaffolds, or chemotypes, for microtubule stabilization that might serve as a basis for the discovery of new generations of anticancer drugs. We have elaborated a series of epothilone-derived macrolactones whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of a conformationally constrained side chain, the removal of the C3-hydroxyl group, and the replacement of C12 with nitrogen. So far, this approach has yielded analogs 30 and 40 that are the most advanced, the most rigorously modified, structures, both of which are potent antiproliferative agents with low nanomolar activity against several human cancer cell lines in vitro. The synthesis was achieved through a macrolactone-based strategy or a high-yielding RCM reaction. The 12-aza-epothilone ("azathilone" 40) may be considered a "non-natural" natural product that still retains most of the overall structural characteristics of a true natural product but is structurally unique, because it lies outside of the general scope of Nature's biosynthetic machinery for polyketide synthesis. Like natural epothilones, both 30 and 40 promote tubulin polymerization in vitro and at the cellular level induce cell cycle arrest in mitosis. These facts indicate that cancer cell growth inhibition by these compounds is based on the same mechanistic underpinnings as those for natural epothilones. Interestingly, the 9,10-dehydro analog of 40 is significantly less active than the saturated parent compound, which is contrary to observations for natural epothilones B or D. This may point to differences in the bioactive conformations of N-acyl-12-aza-epothilones like 40 and natural epothilones. In light of their distinct structural features, combined with an epothilone-like (and taxol-like) in vitro biological profile, 30 and 40 can be considered as representative examples of new chemotypes for microtubule stabilization. As such, they may offer the same potential for pharmacological differentiation from the original epothilone leads as various newly discovered microtubule-stabilizing natural products with macrolactone structures, such as laulimalide, peloruside, or dictyostatin.
Resumo:
The SAR of a series of new epothilone A derivatives with a 2-substituted-1,3-oxazoline moiety trans-fused to the C12-C13 bond of the deoxy macrocycle have been investigated with regard to tubulin polymerization induction and cancer cell growth inhibition. Significant differences in antiproliferative activity were observed between different analogs, depending on the nature of the substituent at the 2-position of the oxazoline ring. The most potent compounds showed comparable activity with the natural product epothilone A. Modeling studies provide a preliminary rationale for the observed SAR.
Resumo:
Δ(9)-tetrahydrocannabinol (Δ(9)-THC) is the major psychoactive cannabinoid in hemp (Cannabis sativa L.) and responsible for many of the pharmacological effects mediated via cannabinoid receptors. Despite being the major cannabinoid scaffold in nature, Δ(9)-THC double bond isomers remain poorly studied. The chemical scaffold of tetrahydrocannabinol can be assembled from the condensation of distinctly substituted phenols and monoterpenes. Here we explored a microwave-assisted one pot heterogeneous synthesis of Δ(3)-THC from orcinol (1a) and pulegone (2). Four Δ(3)-THC analogues and corresponding Δ(4a)-tetrahydroxanthenes (Δ(4a)-THXs) were synthesized regioselectively and showed differential binding affinities for CB1 and CB2 cannabinoid receptors. Here we report for the first time the CB1 receptor binding of Δ(3)-THC, revealing a more potent receptor binding affinity for the (S)-(-) isomer (hCB1Ki = 5 nM) compared to the (R)-(+) isomer (hCB1Ki = 29 nM). Like Δ(9)-THC, also Δ(3)-THC analogues are partial agonists at CB receptors as indicated by [(35)S]GTPγS binding assays. Interestingly, the THC structural isomers Δ(4a)-THXs showed selective binding and partial agonism at CB2 receptors, revealing a simple non-natural natural product-derived scaffold for novel CB2 ligands.
Resumo:
Epothilones are bacterial macrolides with potent microtubule-stabilizing and antiproliferative activity, which have served as successful lead structures for the discovery of several clinical candidates for cancer treatment. Overall, seven epothilone-type agents have been advanced to clinical evaluation in humans so far and one of these has been approved by the FDA in 2007 for clinical use in breast cancer patients. Notwithstanding these impressive numbers, however, the structural diversity represented by the collection of epothilone analogs that have been (or still are) investigated clinically is rather limited and their individual structures show little divergence from the original natural product leads. In contrast, we have elaborated a series of epothilone-derived macro-lactones, whose overall structural features significantly deviate from those of the natural epothilone scaffold and thus define new structural families of microtubule-stabilizing agents. Key elements of our hypermodification strategy are the change of the natural epoxide geometry from cis to trans, the incorporation of conformationally constrained side chains, the removal of the C(3)-hydroxyl group, and the replacement of C(12) with nitrogen. The latter modification leads to aza-macrolides that may be described as 'non-natural natural products'.
Resumo:
Structure-activity relationship studies were carried out by chemical modification of manzamine A (1), 8-hydroxymanzamine A (2), manzamine F (14), and ircinal isolated from the sponge Acanthostrongylophora. The derived analogues were evaluated for antimalarial, antimicrobial, and antineuroinflammatory activities. Several modified products exhibited potent and improved in vitro antineuroinflammatory, antimicrobial, and antimalarial activity. 1 showed improved activity against malaria compared to chloroquine in both multi- and single-dose in vivo experiments. The significant antimalarial potential was revealed by a 100% cure rate of malaria in mice with one administration of 100 mg/kg of 1. The potent antineuroinflammatory activity of the manzamines will provide great benefit for the prevention and treatment of cerebral infections (e.g., Cryptococcus and Plasmodium). In addition, 1 was shown to permeate across the blood-brain barrier (BBB) in an in vitro model using a MDR-MDCK monolayer. Docking studies support that 2 binds to the ATP-noncompetitive pocket of glycogen synthesis kinase-3beta (GSK-3beta), which is a putative target of manzamines. On the basis of the results presented here, it will be possible to initiate rational drug design efforts around this natural product scaffold for the treatment of several different diseases.
Resumo:
This review article provides an overview on the current state of research in the area of microtubule-stabilizing agents from natural sources, with a primary focus on the biochemistry, biology, and pharmacology associated with these compounds. A variety of natural products have been discovered over the last decade to inhibit human cancer cell proliferation through a taxol-like mechanism. These compounds represent a whole new range of structurally diverse lead structures for anticancer drug discovery.
Resumo:
Since the discovery that Delta 9-tetrahydrocannabinol and related cannabinoids from Cannabis sativa L. act on specific physiological receptors in the human body and the subsequent elucidation of the mammalian endogenous cannabinoid system, no other natural product class has been reported to mimic the effects of cannabinoids. We recently found that N-alkyl amides from purple coneflower (Echinacea spp.) constitute a new class of cannabinomimetics, which specifically engage and activate the cannabinoid type-2 (CB2) receptors. Cannabinoid type-1 (CB1) and CB2 receptors belong to the family of G protein-coupled receptors and are the primary targets of the endogenous cannabinoids N-arachidonoyl ethanolamine and 2-arachidonoyl glyerol. CB2 receptors are believed to play an important role in distinct pathophysiological processes, including metabolic dysregulation, inflammation, pain, and bone loss. CB2 receptors have, therefore, become of interest as new targets in drug discovery. This review focuses on N-alkyl amide secondary metabolites from plants and underscores that this group of compounds may provide novel lead structures for the development of CB2-directed drugs.