97 resultados para NFAT isoforms
Resumo:
The enzyme tissue non-specific alkaline phosphatase (TNAP) belongs to the ectophosphatase family. It is present in large amounts in bone in which it plays a role in mineralization but little is known about its function in other tissues. Arguments are accumulating for its involvement in the brain, in particular in view of the neurological symptoms accompanying human TNAP deficiencies. We have previously shown, by histochemistry, alkaline phosphatase (AP) activity in monkey brain vessels and parenchyma in which AP exhibits specific patterns. Here, we clearly attribute this activity to TNAP expression rather than to other APs in primates (human and marmoset) and in rodents (rat and mouse). We have not found any brain-specific transcripts but our data demonstrate that neuronal and endothelial cells exclusively express the bone TNAP transcript in all species tested, except in mouse neurons in which liver TNAP transcripts have also been detected. Moreover, we highlight the developmental regulation of TNAP expression; this also acts during neuronal differentiation. Our study should help to characterize the regulation of the expression of this ectophosphatase in various cell types of the central nervous system.
Resumo:
We analyzed immunohistochemically the expression of CD24 and spliced variants of CD44v5 and v9 in invasive micropapillary carcinoma (IMPC) of the breast that is a rather aggressive tumor characterized by alteration of cells adhesion molecules, early lymph node metastases and poor prognosis. We analyzed 31 high-grade IMPCs and compared their expression to 22 high grade (G3) invasive ductal carcinomas of the breast (IDCs). We found a higher expression of CD24 in high-grade IMPCs with a peculiar inverted apical localization, compared to IDCs, showing a strong cytoplasmic staining; normal breast tissue resulted completely negative. IMPCs showed reduced expression of CD44v5 and CD44v9 compared with IDCs, but without a statistical significant difference. This study demonstrated that IMPC represents a distinct entity of breast carcinoma with high expression of CD24 with a typical inverted apical membrane pattern and reduction of CD44 isoforms v5 and v9, compared to IDCs. These features could explain the high lymph-vascular invasion propensity and higher metastatic capability of these tumors and could be a useful tool for a future targeted therapy.
Resumo:
Phosphatidylinositol 3-kinases (PI3Ks) are key molecules in the signal transduction pathways initiated by the binding of extracellular signals to their cell surface receptors. The PI3K family of enzymes comprises eight catalytic isoforms subdivided into three classes and control a variety of cellular processes including proliferation, growth, apoptosis, migration and metabolism. Deregulation of the PI3K pathway has been extensively investigated in connection to cancer, but is also involved in other commonly occurring diseases such as chronic inflammation, autoimmunity, allergy, atherosclerosis, cardiovascular and metabolic diseases. The fact that the PI3K pathway is deregulated in a large number of human diseases, and its importance for different cellular responses, makes it an attractive drug target. Pharmacological PI3K inhibitors have played a very important role in studying cellular responses involving these enzymes. Currently, a wide range of selective PI3K inhibitors have been tested in preclinical studies and some have entered clinical trials in oncology. However, due to the complexity of PI3K signaling pathways, developing an effective anti-cancer therapy may be difficult. The biggest challenge in curing cancer patients with various signaling pathway abnormalities is to target multiple components of different signal transduction pathways with mechanism-based combinatorial treatments. In this article we will give an overview of the complex role of PI3K isoforms in human diseases and discuss their potential as drug targets. In addition, we will describe the drugs currently used in clinical trials, as well as promising emerging candidates.
Resumo:
Transforming growth factor-β (TGFβ) plays an important role in breast cancer metastasis. Here phosphoinositide 3-kinase (PI3K) signalling was found to play an essential role in the enhanced migration capability of fibroblastoid cells (FibRas) derived from normal mammary epithelial cells (EpH4) by transduction of oncogenic Ras (EpRas) and TGFβ1. While expression of the PI3K isoform p110δ was down-regulated in FibRas cells, there was an increase in the expression of p110α and p110β in the fibroblastoid cells. The PI3K isoform p110β was found to specifically contribute to cell migration in FibRas cells, while p110α contributed to the response in EpH4, EpRas and FibRas cells. Akt, a downstream targets of PI3K signalling, had an inhibitory role in the migration of transformed breast cancer cells, while Rac, Cdc42 and the ribosomal protein S6 kinase (S6K) were necessary for the response. Together our data reveal a novel specific function of the PI3K isoform p110β in the migration of cells transformed by oncogenic H-Ras and TGF-β1.
Resumo:
Classical benzodiazepines, such as diazepam, interact with α(x)β(2)γ(2) GABA(A) receptors, x = 1, 2, 3, 5 and modulate their function. Modulation of different receptor isoforms probably results in selective behavioural effects as sedation and anxiolysis. Knowledge of differences in the structure of the binding pocket in different receptor isoforms is of interest for the generation of isoform-specific ligands. We studied here the interaction of the covalently reacting diazepam analogue 3-NCS with α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and with receptors containing the homologous mutations in α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2). The interaction was studied using radioactive ligand binding and at the functional level using electrophysiological techniques. Both strategies gave overlapping results. Our data allow conclusions about the relative apposition of α(1)S204Cβ(2)γ(2), α(1)S205Cβ(2)γ(2) and α(1)T206Cβ(2)γ(2) and homologous positions in α(2), α(3), α(5) and α(6) with C-atom adjacent to the keto-group in diazepam. Together with similar data on the C-atom carrying Cl in diazepam, they indicate that the architecture of the binding site for benzodiazepines differs in each GABA(A) receptor isoform α(1)β(2)γ(2), α(2)β(2)γ(2), α(3)β(2)γ(2), α(5)β(1/2)γ(2) and α(6)β(2)γ(2).
Resumo:
Traditional NSAIDs, selective cyclooxygenase (COX)-2 inhibitors, and inhibitors of nitric oxide synthase (NOS) impair the healing of preexisting gastric ulcers. However, the role of COX-1 (with or without impairment of COX-2) and the interaction between COX and NOS isoforms during healing are less clear. Thus we investigated healing and regulation of COX and NOS isoforms during ulcer healing in COX-1 and COX-2 deficiency and inhibition mouse models. In this study, female wild-type COX-1(-/-) and COX-2(-/-) mice with gastric ulcers induced by cryoprobe were treated intragastrically with vehicle, selective COX-1 (SC-560), COX-2 (celecoxib, rofecoxib, and valdedoxib), and unselective COX (piroxicam) inhibitors. Ulcer healing parameters, mRNA expression, and activity of COX and NOS were quantified. Gene disruption or inhibition of COX-1 did not impair ulcer healing. In contrast, COX-2 gene disruption and COX-2 inhibitors moderately impaired wound healing. More severe healing impairment was found in dual (SC-560 + rofecoxib) and unselective (piroxicam) COX inhibition and combined COX impairment (in COX-1(-/-) mice with COX-2 inhibition and COX-2(-/-) mice with COX-1 inhibition). In the ulcerated repair tissue, COX-2 mRNA in COX-1(-/-) mice, COX-1 mRNA in COX-2(-/-) mice, and, remarkably, NOS-2 and NOS-3 mRNA in COX-impaired mice were more upregulated than in wild-type mice. This study demonstrates that COX-2 is a key mediator in gastric wound healing. In contrast, COX-1 has no significant role in healing when COX-2 is unimpaired but becomes important when COX-2 is impaired. As counterregulatory mechanisms, mRNA of COX and NOS isoforms were increased during healing in COX-impaired mice.
Resumo:
DMT1 (divalent metal-ion transporter 1) is a widely expressed metal-ion transporter that is vital for intestinal iron absorption and iron utilization by most cell types throughout the body, including erythroid precursors. Mutations in DMT1 cause severe microcytic anaemia in animal models. Four DMT1 isoforms that differ in their N- and C-termini arise from mRNA transcripts that vary both at their 5'-ends (starting in exon 1A or exon 1B) and at their 3'-ends giving rise to mRNAs containing (+) or lacking (-) the 3'-IRE (iron-responsive element) and resulting in altered C-terminal coding sequences. To determine whether these variations result in functional differences between isoforms, we explored the functional properties of each isoform using the voltage clamp and radiotracer assays in cRNA-injected Xenopus oocytes. 1A/IRE+-DMT1 mediated Fe2+-evoked currents that were saturable (K(0.5)(Fe) approximately 1-2 microM), temperature-dependent (Q10 approximately 2), H+-dependent (K(0.5)(H) approximately 1 muM) and voltage-dependent. 1A/IRE+-DMT1 exhibited the provisional substrate profile (ranked on currents) Cd2+, Co2+, Fe2+, Mn2+>Ni2+, V3+>>Pb2+. Zn2+ also evoked large currents; however, the zinc-evoked current was accounted for by H+ and Cl- conductances and was not associated with significant Zn2+ transport. 1B/IRE+-DMT1 exhibited the same substrate profile, Fe2+ affinity and dependence on the H+ electrochemical gradient. Each isoform mediated 55Fe2+ uptake and Fe2+-evoked currents at low extracellular pH. Whereas iron transport activity varied markedly between the four isoforms, the activity for each correlated with the density of anti-DMT1 immunostaining in the plasma membrane, and the turnover rate of the Fe2+ transport cycle did not differ between isoforms. Therefore all four isoforms of human DMT1 function as metal-ion transporters of equivalent efficiency. Our results reveal that the N- and C-terminal sequence variations among the DMT1 isoforms do not alter DMT1 functional properties. We therefore propose that these variations serve as tissue-specific signals or cues to direct DMT1 to the appropriate subcellular compartments (e.g. in erythroid cells) or the plasma membrane (e.g. in intestine).
Resumo:
The 5' cap structure of trypanosomatid mRNAs, denoted cap 4, is a complex structure that contains unusual modifications on the first four nucleotides. We examined the four eukaryotic initiation factor 4E (eIF4E) homologues found in the Leishmania genome database. These proteins, denoted LeishIF4E-1 to LeishIF4E-4, are located in the cytoplasm. They show only a limited degree of sequence homology with known eIF4E isoforms and among themselves. However, computerized structure prediction suggests that the cap-binding pocket is conserved in each of the homologues, as confirmed by binding assays to m(7)GTP, cap 4, and its intermediates. LeishIF4E-1 and LeishIF4E-4 each bind m(7)GTP and cap 4 comparably well, and only these two proteins could interact with the mammalian eIF4E binding protein 4EBP1, though with different efficiencies. 4EBP1 is a translation repressor that competes with eIF4G for the same residues on eIF4E; thus, LeishIF4E-1 and LeishIF4E-4 are reasonable candidates for serving as translation factors. LeishIF4E-1 is more abundant in amastigotes and also contains a typical 3' untranslated region element that is found in amastigote-specific genes. LeishIF4E-2 bound mainly to cap 4 and comigrated with polysomal fractions on sucrose gradients. Since the consensus eIF4E is usually found in 48S complexes, LeishIF4E-2 could possibly be associated with the stabilization of trypanosomatid polysomes. LeishIF4E-3 bound mainly m(7)GTP, excluding its involvement in the translation of cap 4-protected mRNAs. It comigrates with 80S complexes which are resistant to micrococcal nuclease, but its function is yet unknown. None of the isoforms can functionally complement the Saccharomyces cerevisiae eIF4E, indicating that despite their structural conservation, they are considerably diverged.
Resumo:
CONTEXT: A polymorphism of the GH receptor (GHR) gene resulting in genomic deletion of exon 3 (GHR-d3) has been associated with responsiveness to GH therapy. However, the data reported so far do vary according to the underlying condition, replacement dose, and duration of the treatment. OBJECTIVE, DESIGN: The aim of this study was to analyze the impact of the GHR genotypes in terms of the initial height velocity (HV) resulting from treatment and the impact upon adult height in patients suffering from severe isolated GH deficiency. CONTROLS, PATIENTS, SETTING: A total of 181 subjects (peak stimulated GH
Resumo:
Alterations in nitric oxide synthase (NOS) are implicated in ischemia and ischemia-reperfusion injury. Changes in the 3 NOS isoforms in human skeletal muscle subjected to acute ischemia and reperfusion were studied. Muscle biopsies were taken from patients undergoing total knee replacement. Distribution of the specific NOS isoforms within muscle sections was studied using immunohistochemistry. NOS mRNA levels were measured using real-time reverse transcription-polymerase chain reaction and protein levels studied using Western blotting. NOS activity was also assessed using the citrulline assay. All 3 NOS isoforms were found in muscle sections associated with muscle fibers and microvessels. In muscle subjected to acute ischemia and reperfusion, NOS I/neuronal NOS mRNA and protein were elevated during reperfusion. NOS III/endothelial NOS was also upregulated at the protein level during reperfusion. No changes in NOS II/inducible NOS expression or NOS activity occurred. In conclusion, alterations in NOS I and III (neuronal NOS and endothelial NOS) at different levels occurred after acute ischemia and reperfusion in human skeletal muscle; however, this did not result in increased NOS activity. In the development of therapeutic agents based on manipulation of the NO pathway, targeting the appropriate NOS isoenzymes may be important.
Resumo:
Classical benzodiazepines, for example diazepam, interact with alpha(x)beta(2)gamma(2) GABA(A) receptors, x = 1, 2, 3, 5. Little is known about effects of alpha subunits on the structure of the binding pocket. We studied here the interaction of the covalently reacting diazepam analog 7-Isothiocyanato-5-phenyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one (NCS compound) with alpha(1)H101Cbeta(2)gamma(2) and with receptors containing the homologous mutation, alpha(2)H101Cbeta(2)gamma(2), alpha(3)H126Cbeta(2)gamma(2) and alpha(5)H105Cbeta(2)gamma(2). This comparison was extended to alpha(6)R100Cbeta(2)gamma(2) receptors as this mutation conveys to these receptors high affinity towards classical benzodiazepines. The interaction was studied at the ligand binding level and at the functional level using electrophysiological techniques. Results indicate that the geometry of alpha(6)R100Cbeta(2)gamma(2) enables best interaction with NCS compound, followed by alpha(3)H126Cbeta(2)gamma(2), alpha(1)H101Cbeta(2)gamma(2) and alpha(2)H101Cbeta(2)gamma(2), while alpha(5)H105Cbeta(2)gamma(2) receptors show little interaction. Our results allow conclusions about the relative apposition of alpha(1)H101 and homologous positions in alpha(2), alpha(3), alpha(5) and alpha(6) with the position occupied by -Cl in diazepam. During this study we found evidence for the presence of a novel site for benzodiazepines that prevents modulation of GABA(A) receptors via the classical benzodiazepine site. The novel site potentially contributes to the high degree of safety to some of these drugs. Our results indicate that this site may be located at the alpha/beta subunit interface pseudo-symmetrically to the site for classical benzodiazepines located at the alpha/gamma interface.
Resumo:
To study whether protein kinase C (PKC) isoforms can interact with protein-tyrosine-phosphatases (PTPs) which are connected to the insulin signaling pathway, we co-overexpressed PKC isoforms together with insulin receptor, docking proteins, and the PTPs SHP1 and SHP2 in human embryonic kidney (HEK) 293 cells. After phorbol ester induced activation of PKC isoforms alpha, beta 1, beta 2, and eta, we could show a defined gel mobility shift of SHP2, indicating phosphorylation on serine/threonine residues. This phosphorylation was not dependent on insulin receptor or insulin receptor substrate-1 (IRS-1) overexpression and did not occur for the closely related phosphatase SHP1. Furthermore, PKC phosphorylation of SHP2 was completely blocked by the PKC inhibitor bisindolylmaleimide and was not detectable when SHP2 was co-overexpressed with kinase negative mutants of PKC beta 1 and -beta 2. The phosphorylation also occurred on endogenous SHP2 in Chinese hamster ovary (CHO) cells stably overexpressing PKC beta 2. Using point mutants of SHP2, we identified serine residues 576 and 591 as phosphorylation sites for PKC. However, no change of phosphatase activity by TPA treatment was detected in an in vitro assay. In summary, SHP2 is phosphorylated on serine residues 576 and 591 by PKC isoforms alpha, beta 1, beta 2, and eta.
Resumo:
AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.
Resumo:
BACKGROUND AND OBJECTIVE Phenotyping cocktails use a combination of cytochrome P450 (CYP)-specific probe drugs to simultaneously assess the activity of different CYP isoforms. To improve the clinical applicability of CYP phenotyping, the main objectives of this study were to develop a new cocktail based on probe drugs that are widely used in clinical practice and to test whether alternative sampling methods such as collection of dried blood spots (DBS) or saliva could be used to simplify the sampling process. METHODS In a randomized crossover study, a new combination of commercially available probe drugs (the Basel cocktail) was tested for simultaneous phenotyping of CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and CYP3A4. Sixteen subjects received low doses of caffeine, efavirenz, losartan, omeprazole, metoprolol and midazolam in different combinations. All subjects were genotyped, and full pharmacokinetic profiles of the probe drugs and their main metabolites were determined in plasma, dried blood spots and saliva samples. RESULTS The Basel cocktail was well tolerated, and bioequivalence tests showed no evidence of mutual interactions between the probe drugs. In plasma, single timepoint metabolic ratios at 2 h (for CYP2C19 and CYP3A4) or at 8 h (for the other isoforms) after dosing showed high correlations with corresponding area under the concentration-time curve (AUC) ratios (AUC0-24h parent/AUC0-24h metabolite) and are proposed as simple phenotyping metrics. Metabolic ratios in dried blood spots (for CYP1A2 and CYP2C19) or in saliva samples (for CYP1A2) were comparable to plasma ratios and offer the option of minimally invasive or non-invasive phenotyping of these isoforms. CONCLUSIONS This new combination of phenotyping probe drugs can be used without mutual interactions. The proposed sampling timepoints have the potential to facilitate clinical application of phenotyping but require further validation in conditions of altered CYP activity. The use of DBS or saliva samples seems feasible for phenotyping of the selected CYP isoforms.
Resumo:
The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.