118 resultados para NATO Mediterranean Dialogue
Resumo:
The present study was conducted to assess the interrelation between teat anatomy and machine milking in dairy buffaloes raised in Switzerland. A 3-min pre-stimulation induced milk ejection before cluster attachment in most cases and caused an optimal milk removal during machine milking. In an additional experiment, longitudinal cross-section ultrasound was obtained before and after a 3-min pre-stimulation. Teat wall thickness, teat diameter, cisternal diameter and teat canal length were evaluated. It was observed that 3-min pre-stimulation dramatically reduced teat canal length whereas all the other anatomical parameters remained unchanged. The vacuum needed to open the teat canal was also measured before and after a 3-min pre-stimulation by using a special teat cup with only the mouthpiece of the liner remaining on the top of the teat cup (no liner, no pulsation). Without pre-stimulation but after wetting the teat canal by stripping one squirt of milk out of the teat, no milk could be withdrawn with a vacuum up to 39 kPa. However, after pre-stimulation, milk flow occurred in all buffaloes at a vacuum between 16 and 38 kPa. In the last experiment, the teat tissue was examined in slaughtered buffaloes and compared with teat tissue of cows. No difference was noted in histological sections and teat canal length was similar in cows and buffaloes. Proximal to the teat canal, the teat did not pass into an open cistern but the lumen was collapsed. In conclusion, buffaloes need to be well pre-stimulated because the tissue above the teat canal provides additional teat closure before milk ejection. Therefore, milk can only be obtained after pre-stimulation.
Resumo:
We use long instrumental temperature series together with available field reconstructions of sea-level pressure (SLP) and three-dimensional climate model simulations to analyze relations between temperature anomalies and atmospheric circulation patterns over much of Europe and the Mediterranean for the late winter/early spring (January–April, JFMA) season. A Canonical Correlation Analysis (CCA) investigates interannual to interdecadal covariability between a new gridded SLP field reconstruction and seven long instrumental temperature series covering the past 250 years. We then present and discuss prominent atmospheric circulation patterns related to anomalous warm and cold JFMA conditions within different European areas spanning the period 1760–2007. Next, using a data assimilation technique, we link gridded SLP data with a climate model (EC-Bilt-Clio) for a better dynamical understanding of the relationship between large scale circulation and European climate. We thus present an alternative approach to reconstruct climate for the pre-instrumental period based on the assimilated model simulations. Furthermore, we present an independent method to extend the dynamic circulation analysis for anomalously cold European JFMA conditions back to the sixteenth century. To this end, we use documentary records that are spatially representative for the long instrumental records and derive, through modern analogs, large-scale SLP, surface temperature and precipitation fields. The skill of the analog method is tested in the virtual world of two three-dimensional climate simulations (ECHO-G and HadCM3). This endeavor offers new possibilities to both constrain climate model into a reconstruction mode (through the assimilation approach) and to better asses documentary data in a quantitative way.
Resumo:
Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.
Resumo:
We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.