70 resultados para Muscular tension
Resumo:
OBJECTIVE: To describe and evaluate psychosocial factors in nonorganic voice disorders (NVDs). Nonorganic voice disorders are presumed to be the result of increased muscular tension that is caused to varying extents by vocal misuse and emotional stress. It is therefore necessary to include both of these in the diagnosis and treatment of patients with voice disorders. DESIGN: Clinical survey. SETTING: Academic tertiary referral center. PATIENTS: To evaluate psychosocial factors in NVDs, a sample of 74 patients with NVDs was examined psychologically using the Giessen Test and Picture Frustration Test. The results were compared with a control group of 19 patients with an organic dysphonia (vocal cord paralysis). MAIN OUTCOME MEASURES: Six scales of the Giessen Test (social response, dominance, control, underlying mood, permeability, and social potency), 3 reaction types of the Picture Frustration Test (obstacle dominance, ego defense, and need persistence), and 3 aggression categories of the Picture Frustration Test (extrapunitivity, intropunitivity, and impunitivity). RESULTS: The most striking significant difference between the 2 groups was that in conflict situations, patients with NVDs sought a quick solution or expected other people to provide one, which prevented them from understanding the underlying causes of the conflict. CONCLUSIONS: Only if the psychosocial aspects are taken into account can patients with NVD be offered a therapy that treats the causes of the voice disorder. It must be decided individually whether and when a voice training approach or a more psychological-psychotherapeutical approach is preferable.
Resumo:
BACKGROUND: Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. MATERIALS AND METHODS: Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. RESULTS: After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. CONCLUSIONS: In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP.
Resumo:
In Spinal Muscular Atrophy (SMA), the SMN1 gene is deleted or inactivated. Because of a splicing problem, the second copy gene, SMN2, generates insufficient amounts of functional SMN protein, leading to the death of spinal cord motoneurons. For a "severe" mouse SMA model (Smn -/-, hSMN2 +/+; with affected pups dying at 5-7 days), which most closely mimicks the genetic set-up in human SMA patients, we characterise SMA-related ultrastructural changes in neuromuscular junctions (NMJs) of two striated muscles with discrete functions. In the diaphragm, but not the soleus muscle of 4-days old SMA mice, mitochondria on both sides of the NMJs degenerate, and perisynaptic Schwann cells as well as endoneurial fibroblasts show striking changes in morphology. Importantly, NMJs of SMA mice in which a modified U7 snRNA corrects SMN2 splicing and delays or prevents SMA symptoms are normal. This ultrastructural study reveals novel features of NMJ alterations - in particular the involvement of perisynaptic Schwann cells - that may be relevant for human SMA pathogenesis.
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
Mutations in the dystrophin gene have long been recognised as a cause of mental retardation. However, for reasons that are unclear, some boys with dystrophin mutations do not show general cognitive deficits. To investigate the relationship between dystrophin mutations and cognition, the general intellectual abilities of a group of 25 boys with genetically confirmed Duchenne muscular dystrophy were evaluated. Furthermore, a subgroup underwent additional detailed neuropsychological assessment. The results showed a mean full scale intelligence quotient (IQ) of 88 (standard deviation 24). Patients performed very poorly on various neuropsychological tests, including arithmetics, digit span tests and verbal fluency. No simple relationship between dystrophin mutations and cognitive functioning could be detected. However, our analysis revealed that patients who lack the dystrophin isoform Dp140 have significantly greater cognitive problems.
Resumo:
The paralysis-by-analysis phenomenon, i.e., attending to the execution of one's movement impairs performance, has gathered a lot of attention over recent years (see Wulf, 2007, for a review). Explanations of this phenomenon, e.g., the hypotheses of constrained action (Wulf et al., 2001) or of step-by-step execution (Masters, 1992; Beilock et al., 2002), however, do not refer to the level of underlying mechanisms on the level of sensorimotor control. For this purpose, a “nodal-point hypothesis” is presented here with the core assumption that skilled motor behavior is internally based on sensorimotor chains of nodal points, that attending to intermediate nodal points leads to a muscular re-freezing of the motor system at exactly and exclusively these points in time, and that this re-freezing is accompanied by the disruption of compensatory processes, resulting in an overall decrease of motor performance. Two experiments, on lever sequencing and basketball free throws, respectively, are reported that successfully tested these time-referenced predictions, i.e., showing that muscular activity is selectively increased and compensatory variability selectively decreased at movement-related nodal points if these points are in the focus of attention.
Resumo:
It has been shown that the pressure-to-cornea index (PCI), which estimates the relative effects of intraocular pressure (IOP) and central corneal thickness (CCT), may differentiate between glaucoma and non-glaucoma states. The authors investigated the utility of the pressure-cornea-vascular index (PCVI) in predicting field-progression in patients with normal tension glaucoma (NTG).
Resumo:
The purpose of this experimental study was to investigate the effect of tube tension reduction on image contrast and image quality in pediatric temporal bone computed tomography (CT).
Resumo:
In multiple sclerosis (MS), fatigue is a common and often disabling symptom. It has multiple causes with central motor fatigue playing an important role.
Resumo:
Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.