44 resultados para Medical and biological imaging
Resumo:
Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) provide metabolic information on the musculoskeletal system, thus helping to understand the biochemical and pathophysiological nature of numerous diseases. In particular, MRS has been used to study the energy metabolism of muscular tissue since the very beginning of magnetic resonance examinations in humans when small-bore magnets for studies of the limbs became available. Even more than in other organs, the observation of non-proton-nuclei was important in muscle tissue. Spatial localization was less demanding in these studies, however, high temporal resolution was necessary to follow metabolism during exercise and recovery. The observation of high-energy phosphates during and after the application of workload gives insight into oxidative phosphorylation, a process that takes place in the mitochondria and characterizes impaired mitochondrial function. New applications in insulin-resistant patients followed the development of volume-selective 1H-MRS in whole-body magnets. Nowadays, multinuclear MRS and MRSI of the musculoskeletal system provide several windows to vital biochemical pathways noninvasively. It is shown how MRS and MRSI have been used in numerous diseases to characterize an involvement of the muscular metabolism.
Resumo:
Hatchet blows to the human skull often cause fatal injuries. We present a case of homicide by hatchet blow that underwent CT, MRI, and autopsy examination. Skull fragmentation, fracture lines, and brain injuries were demonstrated prior to autopsy. Many of the hatchet-specific characteristics (flaking, crushing, shattering, and fracture lines) described in literature were observed in the post-mortem imaging of this case.
Resumo:
The aim of this article is to disclose the characteristics of postmortem forensic imaging; give an overview of the several possible findings in postmortem imaging, which are uncommon or new to clinical radiologists; and discuss the possible pitfalls. Unspecific postmortem signs are enlisted and specific signs shall be presented, which are typical for one cause of death. Unspecific signs. Livor mortis may not only be seen from the outside, but also inside the body in the lungs: in chest CT internal livor mortis appear as ground glass opacity in the dependent lower lobes. The aortic wall is often hyperdense in postmortem CT due to wall contraction and loss of luminal pressure. Gas bubbles are very common postmortem due to systemic gas embolism after major open trauma, artificial respiration or initial decomposition; in particular putrefaction produces gas bubbles globally. Specific signs. Intracranial bleeding is hyperattenuating both in radiology and in postmortem imaging. Signs of strangulation are hemorrhage in the soft tissue of the neck like skin, subcutaneous tissue, platysma muscle and lymph nodes. The "vanishing" aorta is indicative for exsanguination. Fluid in the airways with mosaic lung densities and emphysema (aquosum) is typical for fresh-water drowning.
Resumo:
Epothilones are potent antiproliferative agents, which have served as successful lead structures for anticancer drug discovery. However, their therapeutic efficacy would benefit greatly from an increase in their selectivity for tumor cells, which may be achieved through conjugation with a tumor-targeting moiety. Three novel epothilone analogs bearing variously functionalized benzimidazole side chains were synthesized using a strategy based on palladium-mediated coupling and macrolactonization. The synthesis of these compounds is described and their in vitro biological activity is discussed with respect to their interactions with the tubulin/microtubule system and the inhibition of human cancer cell proliferation. The additional functional groups may be used to synthesize conjugates of epothilone derivatives with a variety of tumor-targeting moieties.
Resumo:
To assess the diabetes-related knowledge of medical and nursing house staff with particular focus on inpatient diabetes management and insulin therapy.
Resumo:
OBJECTIVES: To analyse the frequency of and identify risk factors for patient-reported medical errors in Switzerland. The joint effect of risk factors on error-reporting probability was modelled for hypothetical patients. METHODS: A representative population sample of Swiss citizens (n = 1306) was surveyed as part of the Commonwealth Fund’s 2010 lnternational Survey of the General Public’s Views of their Health Care System’s Performance in Eleven Countries. Data on personal background, utilisation of health care, coordination of care problems and reported errors were assessed. Logistic regression analysis was conducted to identify risk factors for patients’ reports of medical mistakes and medication errors. RESULTS: 11.4% of participants reported at least one error in their care in the previous two years (8% medical errors, 5.3% medication errors). Poor coordination of care experiences was frequent. 7.8% experienced that test results or medical records were not available, 17.2% received conflicting information from care providers and 11.5% reported that tests were ordered although they had been done before. Age (OR = 0.98, p = 0.014), poor health (OR = 2.95, p = 0.007), utilisation of emergency care (OR = 2.45, p = 0.003), inpatient-stay (OR = 2.31, p = 0.010) and poor care coordination (OR = 5.43, p <0.001) are important predictors for reporting error. For high utilisers of care that unify multiple risk factors the probability that errors are reported rises up to p = 0.8. CONCLUSIONS: Patient safety remains a major challenge for the Swiss health care system. Despite the health related and economic burden associated with it, the widespread experience of medical error in some subpopulations also has the potential to erode trust in the health care system as a whole.
Resumo:
Cupiennius salei single insulin-like growth factor-binding domain protein (SIBD-1), which exhibits an IGFBP N-terminal domain-like profile, was identified in the hemocytes of the spider C. salei. SIBD-1 was purified by RP-HPLC and the sequence determined by a combination of Edman degradation and 5'-3'- RACE PCR. The peptide (8676.08 Da) is composed of 78 amino acids, contains six intrachain disulphide bridges and carries a modified Thr residue at position 2. SIBD-1 mRNA expression was detected by quantitative real-time PCR mainly in hemocytes, but also in the subesophageal nerve mass and muscle. After infection, the SIBD-1 content in the hemocytes decreases and, simultaneously, the temporal SIBD-1 expression seems to be down-regulated. Two further peptides, SIBD-2 and IGFBP-rP1, also exhibiting IGFBP N-terminal domain variants with unknown functions, were identified on cDNA level in spider hemocytes and venom glands. We conclude that SIBD-1 may play an important role in the immune system of spiders.
Resumo:
Magnetic iron oxide nanoparticles have found application as contrast agents for magnetic resonance imaging (MRI) and as switchable drug delivery vehicles. Their stabilization as colloidal carriers remains a challenge. The potential of poly(ethylene imine)-g-poly(ethylene glycol) (PEGPEI) as stabilizer for iron oxide (γ-Fe₂O₃) nanoparticles was studied in comparison to branched poly(ethylene imine) (PEI). Carrier systems consisting of γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were prepared and characterized regarding their physicochemical properties including magnetic resonance relaxometry. Colloidal stability of the formulations was tested in several media and cytotoxic effects in adenocarcinomic epithelial cells were investigated. Synthesized γ-Fe₂O₃ cores showed superparamagnetism and high degree of crystallinity. Diameters of polymer-coated nanoparticles γ-Fe₂O₃-PEI and γ-Fe₂O₃-PEGPEI were found to be 38.7 ± 1.0 nm and 40.4 ± 1.6 nm, respectively. No aggregation tendency was observable for γ-Fe₂O₃-PEGPEI over 12 h even in high ionic strength media. Furthermore, IC₅₀ values were significantly increased by more than 10-fold when compared to γ-Fe₂O₃-PEI. Formulations exhibited r₂ relaxivities of high numerical value, namely around 160 mM⁻¹ s⁻¹. In summary, novel carrier systems composed of γ-Fe₂O₃-PEGPEI meet key quality requirements rendering them promising for biomedical applications, e.g. as MRI contrast agents.
Resumo:
N,N'-((4-(Dimethylamino)phenyl)methylene)bis(2-phenylacetamide) was discovered by using 3D pharmacophore database searches and was biologically confirmed as a new class of CB(2) inverse agonists. Subsequently, 52 derivatives were designed and synthesized through lead chemistry optimization by modifying the rings A-C and the core structure in further SAR studies. Five compounds were developed and also confirmed as CB(2) inverse agonists with the highest CB(2) binding affinity (CB(2)K(i) of 22-85 nM, EC(50) of 4-28 nM) and best selectivity (CB(1)/CB(2) of 235- to 909-fold). Furthermore, osteoclastogenesis bioassay indicated that PAM compounds showed great inhibition of osteoclast formation. Especially, compound 26 showed 72% inhibition activity even at the low concentration of 0.1 μM. The cytotoxicity assay suggested that the inhibition of PAM compounds on osteoclastogenesis did not result from its cytotoxicity. Therefore, these PAM derivatives could be used as potential leads for the development of a new type of antiosteoporosis agent.
Resumo:
The prototypes for tumor targeting with radiolabeled peptides are derivatives of somatostatin. Usually, they primarily have high affinity for somatostatin receptor subtype 2 (sst2), and they have moderate affinity for sst5. We aimed at developing analogs that recognize different somatostatin receptor subtypes for internal radiotherapy in order to extend the present range of accessible tumors. We synthesized DOTA-octapeptides based on octreotide by replacing Phe3 mainly with unnatural amino acids. The affinity profile was determined by using cell lines transfected with sst1-5. Internalization was determined by using AR42J, HEK-sst3, and HEK-sst5 cell lines, and biodistribution was studied in rat tumor models. Two of the derivatives thus obtained showed an improved binding affinity profile, enhanced internalization into cells expressing sst2 and sst3, respectively, and better tumor:kidney ratios in animals.