72 resultados para Magnetic Stimulation
Resumo:
In the present multi-modal study we aimed to investigate the role of visual exploration in relation to the neuronal activity and performance during visuospatial processing. To this end, event related functional magnetic resonance imaging er-fMRI was combined with simultaneous eye tracking recording and transcranial magnetic stimulation (TMS). Two groups of twenty healthy subjects each performed an angle discrimination task with different levels of difficulty during er-fMRI. The number of fixations as a measure of visual exploration effort was chosen to predict blood oxygen level-dependent (BOLD) signal changes using the general linear model (GLM). Without TMS, a positive linear relationship between the visual exploration effort and the BOLD signal was found in a bilateral fronto-parietal cortical network, indicating that these regions reflect the increased number of fixations and the higher brain activity due to higher task demands. Furthermore, the relationship found between the number of fixations and the performance demonstrates the relevance of visual exploration for visuospatial task solving. In the TMS group, offline theta bursts TMS (TBS) was applied over the right posterior parietal cortex (PPC) before the fMRI experiment started. Compared to controls, TBS led to a reduced correlation between visual exploration and BOLD signal change in regions of the fronto-parietal network of the right hemisphere, indicating a disruption of the network. In contrast, an increased correlation was found in regions of the left hemisphere, suggesting an intent to compensate functionality of the disturbed areas. TBS led to fewer fixations and faster response time while keeping accuracy at the same level, indicating that subjects explored more than actually needed.
Resumo:
BACKGROUND: The aetiology of visual hallucinations is poorly understood in dementia with Lewy bodies. Pathological alterations in visual cortical excitability may be one contributory mechanism. AIMS: To determine visual cortical excitability in people with dementia with Lewy bodies compared with aged-matched controls and also the relationship between visual cortical excitability and visual hallucinations in dementia with Lewy bodies. METHOD: Visual cortical excitability was determined by using transcranial magnetic stimulation (TMS) applied to the occiput to elicit phosphenes (transient subjective visual responses) in 21 patients with dementia with Lewy bodies and 19 age-matched controls. RESULTS: Phosphene parameters were similar between both groups. However, in the patients with dementia with Lewy bodies, TMS measures of visual cortical excitability correlated strongly with the severity of visual hallucinations (P = 0.005). Six patients with dementia with Lewy bodies experienced visual hallucination-like phosphenes (for example, seeing people or figures on stimulation) compared with none of the controls (P = 0.02). CONCLUSIONS: Increased visual cortical excitability in dementia with Lewy bodies does not appear to explain visual hallucinations but it may be a marker for their severity.
Resumo:
Auditory hallucinations comprise a critical domain of psychopathology in schizophrenia. Repetitive transcranial magnetic stimulation (TMS) has shown promise as an intervention with both positive and negative reports. The aim of this study was to test resting-brain perfusion before treatment as a possible biological marker of response to repetitive TMS. Twenty-four medicated patients underwent resting-brain perfusion magnetic resonance imaging with arterial spin labeling (ASL) before 10 days of repetitive TMS treatment. Response was defined as a reduction in the hallucination change scale of at least 50%. Responders (n=9) were robustly differentiated from nonresponders (n=15) to repetitive TMS by the higher regional cerebral blood flow (CBF) in the left superior temporal gyrus (STG) (P<0.05, corrected) before treatment. Resting-brain perfusion in the left STG predicted the response to repetitive TMS in this study sample, suggesting this parameter as a possible bio-marker of response in patients with schizophrenia and auditory hallucinations. Being noninvasive and relatively easy to use, resting perfusion measurement before treatment might be a clinically relevant way to identify possible responders and nonresponders to repetitive TMS.
Resumo:
Transcranial magnetic stimulation (TMS) is a novel therapeutic approach, used in patients with pharmacoresistant auditory verbal hallucinations (AVH). To investigate the neurobiological effects of TMS on AVH, we measured cerebral blood flow with pseudo-continuous magnetic resonance-arterial spin labeling 20 ± 6 hours before and after TMS treatment.
Resumo:
This paper provides a theoretical assessment of the safety considerations encountered in the simultaneous use of transcranial magnetic stimulation (TMS) and neurological interventions involving implanted metallic electrodes, such as electrocorticography. Metal implants are subject to magnetic forces due to fast alternating magnetic fields produced by the TMS coil. The question of whether the mechanical movement of the implants leads to irreversible damage of brain tissue is addressed by an electromagnetic simulation which quantifies the magnitude of imposed magnetic forces. The assessment is followed by a careful mechanical analysis determining the maximum tolerable force which does not cause irreversible tissue damage. Results of this investigation provide useful information on the range of TMS stimulator output powers which can be safely used in patients having metallic implants. It is shown that conventional TMS applications can be considered safe when applied on patients with typical electrode implants as the induced stress in the brain tissue remains well below the limit of tissue damage.
Resumo:
The aim of the study was to examine the effect of low-frequency repetitive transcranial magnetic stimulation on saccade triggering. In five participants, a train of 600 pulses with a frequency of 1 Hz was applied over the right frontal eye field and--as control condition--over the vertex. After repetitive transcranial magnetic stimulation application, oculomotor performance was evaluated with an overlap paradigm. The results show that the repetitive transcranial magnetic stimulation effect was specific for frontal eye field stimulation. Saccade latencies were found to be increased bilaterally for several minutes after the stimulation, and the time course of recovery was different for the ipsilateral and contralateral sides. The results are discussed in the light of possible local and remote repetitive transcranial magnetic stimulation effects on the oculomotor network.
Resumo:
The aim of this study is to develop a new simple method for analyzing one-dimensional transcranial magnetic stimulation (TMS) mapping studies in humans. Motor evoked potentials (MEP) were recorded from the abductor pollicis brevis (APB) muscle during stimulation at nine different positions on the scalp along a line passing through the APB hot spot and the vertex. Non-linear curve fitting according to the Levenberg-Marquardt algorithm was performed on the averaged amplitude values obtained at all points to find the best-fitting symmetrical and asymmetrical peak functions. Several peak functions could be fitted to the experimental data. Across all subjects, a symmetric, bell-shaped curve, the complementary error function (erfc) gave the best results. This function is characterized by three parameters giving its amplitude, position, and width. None of the mathematical functions tested with less or more than three parameters fitted better. The amplitude and position parameters of the erfc were highly correlated with the amplitude at the hot spot and with the location of the center of gravity of the TMS curve. In conclusion, non-linear curve fitting is an accurate method for the mathematical characterization of one-dimensional TMS curves. This is the first method that provides information on amplitude, position and width simultaneously.
Resumo:
Transcranial magnetic stimulation has evolved into a powerful neuroscientific tool allowing to interfere transiently with specific brain functions. In addition, repetitive TMS (rTMS) has long-term effects (e.g. on mood), probably mediated by neurochemical alterations. While long-term safety of rTMS with regard to cognitive functioning is well established from trials exploring its therapeutic efficacy, little is known on whether rTMS can induce changes in cognitive functioning in a time window ranging from minutes to hours, a time in which neurochemical effects correlated with stimulation have been demonstrated. This study examined effects of rTMS on three measures of executive function in healthy subjects who received one single rTMS session (40 trains of 2 s duration 20 Hz stimuli) at the left dorsolateral prefrontal cortex (DLPFC). Compared to a sham condition one week apart, divided attention performance was significantly impaired about 30-60 min after rTMS, while Stroop-interference and performance in the Wisconsin Card Sorting Test was unaffected after rTMS. Repetitive TMS of the left DLPFC, at stimulation parameters used in therapeutic studies, does not lead to a clinically relevant impairment of executive function after stimulation. However, the significant effect on divided attention suggests that cognitive effects of rTMS are not limited to the of acute stimulation, and may possibly reflect known neurochemical alterations induced by rTMS. Sensitive cognitive measures may be useful to trace those short-term effects of rTMS non-invasively in humans.
Resumo:
The aim of the current study was to examine the effect of theta burst repetitive transcranial magnetic stimulation (rTMS) on the blood oxygenation level-dependent (BOLD) activation during repeated functional magnetic resonance imaging (fMRI) measurements. Theta burst rTMS was applied over the right frontal eye field in seven healthy subjects. Subsequently, repeated fMRI measurements were performed during a saccade-fixation task (block design) 5, 20, 35, and 60 min after stimulation. We found that theta burst rTMS induced a strong and long-lasting decrease of the BOLD signal response of the stimulated frontal eye field at 20 and 35 min. Furthermore, less pronounced alterations of the BOLD signal response with different dynamics were found for remote oculomotor areas such as the left frontal eye field, the pre-supplementary eye field, the supplementary eye field, and both parietal eye fields. Recovery of the BOLD signal changes in the anterior remote areas started earlier than in the posterior remote areas. These results show that a) the major inhibitory impact of theta burst rTMS occurs directly in the stimulated area itself, and that b) a lower effect on remote, oculomotor areas can be induced.
Resumo:
In the anti-saccade paradigm, subjects are instructed not to make a reflexive saccade to an appearing lateral target but to make an intentional saccade to the opposite side instead. The inhibition of reflexive saccade triggering is under the control of the dorsolateral prefrontal cortex (DLPFC). The critical time interval at which this inhibition takes place during the paradigm, however, is not exactly known. In the present study, we used single-pulse transcranial magnetic stimulation (TMS) to interfere with DLPFC function in 15 healthy subjects. TMS was applied over the right DLPFC either 100 ms before the onset of the visual target (i.e. -100 ms), at target onset (i.e. 0 ms) or 100 ms after target onset (i.e. +100 ms). Stimulation 100 ms before target onset significantly increased the percentage of anti-saccade errors to both sides, while stimulation at, or after, target onset had no significant effect. All three stimulation conditions had no significant influence on saccade latency of correct or erroneous anti-saccades. These findings show that the critical time interval at which the DLPFC controls the suppression of a reflexive saccade in the anti-saccade paradigm is before target onset. In addition, the results suggest the view that the triggering of correct anti-saccades is not under direct control of the DLPFC.
Resumo:
Theta burst transcranial magnetic stimulation (TBS) may induce behavioural changes that outlast the stimulation period. The neurophysiological basis of these behavioural changes are currently under investigation. Given the evidence that cortical information processing relies on transient synchronization and desynchronization of neuronal assemblies, we set out to test whether TBS is associated with changes of neuronal synchronization as assessed by surface EEG. In four healthy subjects one TBS train of 600 pulses (200 bursts, each burst consisting of 3 pulses at 30 Hz, repeated at intervals of 100 ms) was applied over the right frontal eye field and EEG synchronization was assessed in a time-resolved manner over 60 min by using a non-overlapping moving window. For each time step the linear cross-correlation matrix for six EEG channels of the right and for the six homotopic EEG channels of the left hemisphere were computed and their largest eigenvalues used to assess changes of synchronization. Synchronization was computed for broadband EEG and for the delta, theta, alpha, beta and gamma frequency bands. In all subjects EEG synchronization of the stimulated hemisphere was significantly and persistently increased relative to EEG synchronization of the unstimulated hemisphere. This effect occurred immediately after TBS for the theta, alpha, beta and gamma frequency bands and 10-20 min after TBS for broadband and delta frequency band EEG. Our results demonstrate that TBS is associated with increased neuronal synchronization of the cerebral hemisphere ipsilateral to the stimulation site relative to the unstimulated hemisphere. We speculate that enhanced synchronization interferes with cortical information processing and thus may be a neurophysiological correlate of the impaired behavioural performance detected previously.
Resumo:
The right posterior parietal cortex (PPC) is critically involved in visual exploration behaviour, and damage to this area may lead to neglect of the left hemispace. We investigated whether neglect-like visual exploration behaviour could be induced in healthy subjects using theta burst repetitive transcranial magnetic stimulation (rTMS). To this end, one continuous train of theta burst rTMS was applied over the right PPC in 12 healthy subjects prior to a visual exploration task where colour photographs of real-life scenes were presented on a computer screen. In a control experiment, stimulation was also applied over the vertex. Eye movements were measured, and the distribution of visual fixations in the left and right halves of the screen was analysed. In comparison to the performance of 28 control subjects without stimulation, theta burst rTMS over the right PPC, but not the vertex, significantly decreased cumulative fixation duration in the left screen-half and significantly increased cumulative fixation duration in the right screen-half for a time period of 30 min. These results suggest that theta burst rTMS is a reliable method of inducing transient neglect-like visual exploration behaviour.