69 resultados para Low Density Lipoprotein Receptor-Related Protein-6
Resumo:
BACKGROUND: Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. RESULTS: We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. CONCLUSION: We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.
Resumo:
Vitamin E deficiency increases expression of the CD36 scavenger receptor, suggesting specific molecular mechanisms and signaling pathways modulated by alpha-tocopherol. We show here that alpha-tocopherol down-regulated CD36 expression (mRNA and protein) in oxidized low density lipoprotein (oxLDL)-stimulated THP-1 monocytes, but not in unstimulated cells. Furthermore, alpha-tocopherol treatment of monocytes led to reduction of fluorescent oxLDL-3,3'-dioctadecyloxacarbocyanine perchlorate binding and uptake. Protein kinase C (PKC) appears not to be involved because neither activation of PKC by phorbol 12-myristate 13-acetate nor inhibition by PKC412 was affected by alpha-tocopherol. However, alpha-tocopherol could partially prevent CD36 induction after stimulation with a specific agonist of peroxisome proliferator-activated receptor-gamma (PPARgamma; troglitazone), indicating that this pathway is susceptible to alpha-tocopherol action. Phosphorylation of protein kinase B (PKB) at Ser473 was increased by oxLDL, and alpha-tocopherol could prevent this event. Expression of PKB stimulated the CD36 promoter as well as a PPARgamma element-driven reporter gene, whereas an inactive PKB mutant had no effect. Moreover, coexpression of PPARgamma and PKB led to additive induction of CD36 expression. Altogether, our results support the existence of PKB/PPARgamma signaling pathways that mediate CD36 expression in response to oxLDL. The activation of CD36 expression by PKB suggests that both lipid biosynthesis and fatty acid uptake are stimulated by PKB.
Resumo:
To address the question of whether the high levels of oxidative modified low-density lipoproteins (oxLDL) in pregnancy are opposed by an appropriate humoral autoimmune response providing anti-oxLDL autoantibodies in maternal serum of healthy women throughout gestation.
Resumo:
Although low-density lipoprotein (LDL) cholesterol is often normal in patients with type 2 diabetes mellitus, there is evidence for a reduced fractional catabolic rate and consequently an increased mean residence time (MRT), which can increase atherogenic risk. The dyslipidemia and insulin resistance of type 2 diabetes mellitus can be improved by aerobic exercise, but effects on LDL kinetics are unknown. The effect of 6-month supervised exercise on LDL apolipoprotein B kinetics was studied in a group of 17 patients with type 2 diabetes mellitus (mean age, 56.8 years; range, 38-68 years). Patients were randomized into a supervised group, who had a weekly training session, and an unsupervised group. LDL kinetics were measured with an infusion of 1-(13)C leucine at baseline in all groups and after 6 months of exercise in the patients. Eight body mass index-matched nondiabetic controls (mean age, 50.3 years; range, 40-67 years) were also studied at baseline only. At baseline, LDL MRT was significantly longer in the diabetic patients, whereas LDL production rate and fractional clearance rates were significantly lower than in controls. Percentage of glycated hemoglobin A(1c), body mass index, insulin sensitivity measured by the homeostasis model assessment, and very low-density lipoprotein triglyceride decreased (P < .02) in the supervised group, with no change in the unsupervised group. After 6 months, LDL cholesterol did not change in either the supervised or unsupervised group; but there was a significant change in LDL MRT between groups (P < .05) that correlated positively with very low-density lipoprotein triglyceride (r = 0.51, P < .04) and negatively with maximal oxygen uptake, a measure of fitness (r = -0.51, P = .035), in all patients. The LDL production and clearance rates did not change in either group. This study suggests that a supervised exercise program can reduce deleterious changes in LDL MRT.
Resumo:
AIMS The aim of the study was to examine whether differences in average diameter of low-density lipoprotein (LDL) particles were associated with total and cardiovascular mortality. METHODS AND RESULTS We studied 1643 subjects referred to coronary angiography, who did not receive lipid-lowering drugs. During a median follow-up of 9.9 years, 398 patients died, of these 246 from cardiovascular causes. We calculated average particle diameters of LDL from the composition of LDL obtained by β-quantification. When LDL with intermediate average diameters (16.5-16.8 nm) were used as reference category, the hazard ratios (HRs) adjusted for cardiovascular risk factors for death from any cause were 1.71 (95% CI: 1.31-2.25) and 1.24 (95% CI: 0.95-1.63) in patients with large (>16.8 nm) or small LDL (<16.5 nm), respectively. Adjusted HRs for death from cardiovascular causes were 1.89 (95% CI: 1.32-2.70) and 1.54 (95% CI: 1.06-2.12) in patients with large or small LDL, respectively. Patients with large LDL had higher concentrations of the inflammatory markers interleukin (IL)-6 and C-reactive protein than patients with small or intermediate LDL. Equilibrium density gradient ultracentrifugation revealed characteristic and distinct profiles of LDL particles in persons with large (approximately even distribution of intermediate-density lipoproteins and LDL-1 through LDL-6) intermediate (peak concentration at LDL-4) or small (peak concentration at LDL-6) average LDL particle diameters. CONCLUSIONS Calculated LDL particle diameters identify patients with different profiles of LDL subfractions. Both large and small LDL diameters are independently associated with increased risk mortality of all causes and, more so, due to cardiovascular causes compared with LDL of intermediate size.
Resumo:
OBJECTIVE: To examine by secondary analysis of the Treating to New Targets (TNT) study whether the benefits of intensive versus standard levels of lipid lowering are equally applicable to women. METHODS: A total of 10 001 patients (1902 women) with stable coronary heart disease (CHD) were randomised to double-blind treatment with atorvastatin 10 or 80 mg/day for a median follow-up of 4.9 years. RESULTS: In women and men, intensive treatment with atorvastatin 80 mg significantly reduced the rate of major cardiovascular events compared with atorvastatin 10 mg. Among women, the relative and absolute reductions were 27% and 2.7%, respectively (hazard ratio (HR) = 0.73, 95% confidence interval (CI) 0.54 to 1.00, p = 0.049). In men, the corresponding rate reductions were 21% and 2.2% (HR = 0.79, 95% CI 0.69 to 0.91, p = 0.001). The number needed to treat value (to prevent one cardiovascular event over 4.9 years compared with patients treated with atorvastatin 10 mg) for atorvastatin 80 mg was 29 for women and 30 for men. Rates of death of non-cardiovascular origin in the atorvastatin 80 mg and atorvastatin 10 mg were 3.6% and 1.6%, respectively (p = 0.004) among women, and 2.8% and 3.1% (p = 0.47) among men. CONCLUSION: Intensive lipid-lowering treatment with atorvastatin 80 mg produced significant reductions in relative risk for major cardiovascular events compared with atorvastatin 10 mg in both women and men with stable CHD.
Resumo:
BACKGROUND: Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS: A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS: We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION: In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.
Resumo:
BACKGROUND: Though guidelines emphasize low-density lipoprotein cholesterol (LDL-C) lowering as an essential strategy for cardiovascular risk reduction, achieving target levels may be difficult. PATIENTS AND METHODS: The authors conducted a prospective, controlled, open-label trial examining the effectiveness and safety of high-dose fluvastatin or a standard dosage of simvastatin plus ezetimibe, both with an intensive guideline-oriented cardiac rehabilitation program, in achieving the new ATP III LDL-C targets in patients with proven coronary artery disease. 305 consecutive patients were enrolled in the study. Patients were divided into two groups: the simvastatin (40 mg/d) plus ezetimibe (10 mg/d) and the fluvastatin-only group (80 mg/d). Patients in both study groups received the treatment for 21 days in addition to nonpharmacological measures, including advanced physical, dietary, psychosocial, and educational activities. RESULTS: After 21 days of treatment, a significant reduction in LDL-C was found in both study groups as compared to the initial values, however, the reduction in LDL-C was significantly stronger in the simvastatin plus ezetimibe group: simvastatin plus ezetimibe treatment decreased LDL-C to a mean level of 57.7 +/- 1.7 mg/ml, while fluvastatin achieved a reduction to 84.1 +/- 2.4 mg/ml (p < 0.001). In the simvastatin plus ezetimibe group, 95% of the patients reached the target level of LDL-C < 100 mg/dl. This percentage was significantly higher than in patients treated with fluvastatin alone (75%; p < 0.001). The greater effectiveness of simvastatin plus ezetimibe was more impressive when considering the optional goal of LDL-C < 70 mg/dl (75% vs. 32%, respectively; p < 0.001). There was no difference in occurrence of adverse events between both groups. CONCLUSION: Simvastatin 40 mg/d plus ezetimibe 10 mg/d, on the background of a guideline-oriented standardized intensive cardiac rehabilitation program, can reach 95% effectiveness in achieving challenging goals (LDL < 100 mg/dl) using lipid-lowering medication in patients at high cardiovascular risk.
Resumo:
Patients with adult GH deficiency are often dyslipidemic and may have an increased risk of cardiovascular disease. The secretion and clearance of very low density lipoprotein apolipoprotein B 100 (VLDL apoB) are important determinants of plasma lipid concentrations. This study examined the effect of GH replacement therapy on VLDL apoB metabolism using a stable isotope turnover technique. VLDL apoB kinetics were determined in 14 adult patients with GH deficiency before and after 3 months GH or placebo treatment in a randomized double blind, placebo-controlled study using a primed constant [1-(13)C]leucine infusion. VLDL apoB enrichment was determined by gas chromatography-mass spectrometry. GH replacement therapy increased plasma insulin-like growth factor I concentrations 2.9 +/- 0.5-fold (P < 0.001), fasting insulin concentrations 1.8 +/- 0.6-fold (P < 0.04), and hemoglobin A1C from 5.0 +/- 0.2% to 5.3 +/- 0.2% (mean +/- SEM; P < 0.001). It decreased fat mass by 3.4 +/- 1.3 kg (P < 0.05) and increased lean body mass by 3.5 +/- 0.8 kg (P < 0.01). The total cholesterol concentration (P < 0.02), the low density lipoprotein cholesterol concentration (P < 0.02), and the VLDL cholesterol/VLDL apoB ratio (P < 0.005) decreased. GH therapy did not significantly change the VLDL apoB pool size, but increased the VLDL apoB secretion rate from 9.2 +/- 2.0 to 25.9 +/- 10.3 mg/kg x day (P < 0.01) and the MCR from 11.5 +/- 2.7 to 20.3 +/- 3.2 mL/min (P < 0.03). No significant changes were observed in the placebo group. This study suggests that GH replacement therapy improves lipid profile by increasing the removal of VLDL apoB. Although GH therapy stimulates VLDL apoB secretion, this is offset by the increase in the VLDL apoB clearance rate, which we postulate is due to its effects in up-regulating low density lipoprotein receptors and modifying VLDL composition.
Resumo:
Increased cardiovascular mortality in adult growth hormone deficiency (GHD) may be, in part, explained by the dyslipidaemia associated with this condition. It is possible that abnormalities of very low density lipoprotein apolipoprotein B-100 (VLDL apoB) metabolism contribute to this dyslipidaemia. To test this hypothesis, we measured VLDL apoB kinetics in adult GH deficient patients (4 females, 3 males; age 50.1 +/- 4.7 yr (mean +/- SEM); BMI 28.2 +/- 1.1 kg/m2; total cholesterol (TC) 6.6 +/- 0.3 mmol/l; triglyceride (TG) 2.8 +/- 0.6 mmol/l; HDL cholesterol 1.1 +/- 0.1 mmol/l) and in control subjects (4 females, 3 male; age 47.0 +/- 4.7 yr; BMI 27.0 +/- 2.6 kg/m2; TC 5.0 +/- 0.4 mmol/l; TG 0.9 +/- 0.2 mmol/l; HDL cholesterol 1.4 +/- 0.1 mmol/l). [1-(13)C] leucine was administered by a primed (1 mg/kg), constant intravenous infusion (1 mg/kg/hr) and VLDL apoB enrichment with 13C leucine was determined using gas-chromatography mass-spectrometry. The GHD patients had a significantly higher hepatic secretion rate of VLDL apoB (15.5 +/- 1.8 mg/kg/day vs 9.4 +/- 0.6 mg/kg/day p = 0.007) and reduced catabolism ofVLDL apoB (metabolic clearance rate; 12.3 +/- 1.7 ml/min vs 24.3 +/- 4.8 ml/min p < 0.05) compared with control subjects. These findings suggest that GH is integrally involved in the regulation of VLDL apoB metabolism.
Resumo:
OBJECTIVES Hypothetically the atherogenic effect of the metabolic syndrome may be mediated through the increased occurrence of small LDL-particles which are easily modified to atherogenic oxidized LDL (ox-LDL). The aim of this study was to test this concept by examining the association between circulating ox-LDL, LDL-particle size, and the metabolic syndrome. DESIGN AND RESULTS A population-based sample of clinically healthy 58-year-old men (n = 391) was recruited. Ox-LDL was measured by ELISA (specific monoclonal antibody, mAb-4E6) and LDL-particle size by gradient gel electrophoresis. The results showed that ox-LDL significantly correlated to factors constituting the metabolic syndrome; triglycerides (r = 0.43), plasma insulin (r = 0.20), body mass index (r = 0.20), waist-to-hip ratio (r = 0.21) and HDL (r = -0.24); (P < 0.001). Ox-LDL correlated also to LDL-particle size (r = -0.42), Apo-B (r = 0.70), LDL (r = 0.65); (P < 0.001) and, furthermore, with Apo A-1 (r = -0.13) and heart rate (r = 0.13); (P < 0.01). CONCLUSION The metabolic syndrome was accompanied by high plasma ox-LDL concentrations compared with those without the syndrome. Ox-LDL levels were associated with most of the risk factors constituting the metabolic syndrome and was, in addition related to small LDL-particle size. To our knowledge the present study is the first one to demonstrate that circulating ox-LDL levels are associated with small LDL-particle size in a population representative sample of clinically healthy middle-aged men. The high degree of intercorrelation amongst several factors makes it difficult to clarify the independent role of any specific factor.
Resumo:
OBJECTIVES The aim of the study was to test the hypothesis that circulating markers of inflammation (high-sensitive C-reactive protein, hsCRP) and oxidative modification of lipids (oxidized low-density lipoprotein, oxLDL) were associated with the occurrence of echolucent rather than echogenic femoral artery plaques in a cross-sectional population based cohort of 513, 61-year-old men. BACKGROUND The relationships between circulating oxLDL, hsCRP and the occurrence of echolucent plaques in the femoral artery have not previously been investigated. METHODS The levels of circulating oxLDL and hsCRP were determined in plasma by ELISA. Plaque occurrence, size and echogenicity were measured by B-mode ultrasound in the right femoral artery. Assessment of plaque echogenicity was based on the classification (grades 1-4) proposed by Gray-Weale et al. RESULTS A higher frequency of echolucent femoral plaques was observed in subjects with the metabolic syndrome and current smokers (p=0.01 and p<0.001, respectively) as well as with increasing levels of oxLDL and hsCRP (p=0.002 and p=0.005, respectively). In a multiple logistic regression analysis oxLDL and current smokers turned out to be independent associated with the presence of echolucent femoral artery plaques. CONCLUSIONS The results of the present study support our hypothesis that circulating oxLDL is a marker of an unstable echolucent plaque phenotype in the femoral artery in man.
Resumo:
Oxidised low density lipoproteins (oxLDL) are key players in the development of atherosclerotic cardiovascular diseases. Since there are similarities between the pathogenesis of preeclampsia and atherosclerosis we hypothesised an increased accumulation of oxLDL at the materno-foetal and foeto-foetal interface within the placental tissue of preeclamptic women compared to women with normotensive pregnancies (controls). Moreover, we analysed maternal and foetal serum lipid parameters.
Resumo:
Epidemiological studies suggest that hypopituitary patients have an increased risk for cardiovascular mortality. The dyslipidaemia associated with this condition is often characterised by an increase in total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol (LDL-C) and may contribute to these findings. The underlying mechanisms are not fully elucidated.
Resumo:
In this study we examined the potential inhibition by interferon-gamma (IFN gamma) of the early stages of low density lipoprotein (LDL) oxidation mediated by human peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) in Ham's F-10 medium supplemented with physiological amounts of L-tryptophan (Trp). We assessed LDL oxidation by measuring the consumption of LDL's major antioxidant (i.e., alpha-tocopherol) and targets for oxidation (cholesteryllinoleate and cholesterylarachidonate), together with the accumulation of cholesterylester hydroperoxides and the increase in relative electrophoretic mobility of the lipoprotein particle. Exposure of PBMC or MDM to IFN gamma induced the degradation of extracellular Trp with concomitant accumulation of kynurenine, anthranilic and 3-hydroxyanthranilic acid (3HAA) in the culture medium. Formation of 3HAA, but neither Trp degradation nor formation of kynurenine and anthranilic acid, was inhibited by low amounts of diphenylene iodonium (DPI) in a concentration-dependent manner. In contrast to oxidative Trp metabolism, exposure of human PBMC or MDM to IFN gamma failed to induce degradation of arginine, and nitrite was not detected in the cell supernatant, indicating that nitric oxide synthase was not induced under these conditions. Incubation of LDL in Trp-supplemented F-10 medium resulted in a time-dependent oxidation of the lipoprotein that was accelerated in the presence of PBMC or MDM but inhibited strongly in the presence of both cells and IFN gamma, i.e., when Trp degradation and formation of 3HAA were induced. In contrast, when IFN gamma was added to PBMC or MDM in F-10 medium that was virtually devoid of Trp, inhibition of cell-accelerated LDL oxidation was not observed. Exogenous 3HAA added to PBMC or purified monocytes in the absence of IFN gamma also strongly and in a concentration-dependent manner inhibited LDL oxidation. Selective inhibition of IFN gamma-induced formation of 3HAA by DPI caused reversion of the inhibitory action of this cytokine on both PBMC- and MDM-mediated LDL oxidation. These results show that IFN gamma treatment of human PBMC or MDM in vitro attenuates the extent of LDL oxidation caused by these cells, and indicate that Trp degradation with formation of 3HAA is a major contributing factor to this inhibitory activity.