31 resultados para Local Energy Decay
Resumo:
Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.
Resumo:
We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.
Resumo:
Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.
Resumo:
In surgical animal studies anesthesia is used regularly. Several reports in the literature demonstrate respiratory and cardiovascular side effects of anesthesiologic agents. The aim of this study was to compare two frequently used anesthesia cocktails (ketamine/xylazine [KX] versus medetomidine/climazolam/fentanyl [MCF]) in skin flap mouse models. Systemic blood values, local metabolic parameters, and surgical outcome should be analyzed in critical ischemic skin flap models. Systemic hypoxia was found in the animals undergoing KX anesthesia compared with normoxia in the MCF group (sO(2): 89.2% +/- 2.4% versus 98.5% +/- 1.2%, P < 0.01). Analysis of tissue metabolism revealed impaired anaerobic oxygen metabolism and increased cellular damage in critical ischemic flap tissue under KX anesthesia (lactate/pyruvate ratio: KX 349.86 +/- 282.38 versus MCF 64.53 +/- 18.63; P < 0.01 and glycerol: KX 333.50 +/- 83.91 micromol/L versus MCF 195.83 +/- 29.49 micromol/L; P < 0.01). After 6 d, different rates of flap tissue necrosis could be detected (MCF 57% +/- 6% versus KX 68% +/- 6%, P < 0.01). In summary we want to point out that the type of anesthesia, the animal model and the goal of the study have to be well correlated. Comparing the effects of KX and MCF anesthesia in mice on surgical outcome was a novel aspect of our study.
Resumo:
The low-energy β− emitter 161Tb is very similar to 177Lu with respect to half-life, beta energy and chemical properties. However, 161Tb also emits a significant amount of conversion and Auger electrons. Greater therapeutic effect can therefore be expected in comparison to 177Lu. It also emits low-energy photons that are useful for gamma camera imaging. The 160Gd(n,γ)161Gd→161Tb production route was used to produce 161Tb by neutron irradiation of massive 160Gd targets (up to 40 mg) in nuclear reactors. A semiautomated procedure based on cation exchange chromatography was developed and applied to isolate no carrier added (n.c.a.) 161Tb from the bulk of the 160Gd target and from its stable decay product 161Dy. 161Tb was used for radiolabeling DOTA-Tyr3-octreotate; the radiolabeling profile was compared to the commercially available n.c.a. 177Lu. A 161Tb Derenzo phantom was imaged using a small-animal single-photon emission computed tomography camera. Up to 15 GBq of 161Tb was produced by long-term irradiation of Gd targets. Using a cation exchange resin, we obtained 80%–90% of the available 161Tb with high specific activity, radionuclide and chemical purity and in quantities sufficient for therapeutic applications. The 161Tb obtained was of the quality required to prepare 161Tb–DOTA-Tyr3-octreotate. We were able to produce 161Tb in n.c.a. form by irradiating highly enriched 160Gd targets; it can be obtained in the quantity and quality required for the preparation of 161Tb-labeled therapeutic agents.
Resumo:
Contention-based MAC protocols follow periodic listen/sleep cycles. These protocols face the problem of virtual clustering if different unsynchronized listen/sleep schedules occur in the network, which has been shown to happen in wireless sensor networks. To interconnect these virtual clusters, border nodes maintaining all respective listen/sleep schedules are required. However, this is a waste of energy, if locally a common schedule can be determined. We propose to achieve local synchronization with a mechanism that is similar to gravitation. Clusters represent the mass, whereas synchronization messages sent by each cluster represent the gravitation force of the according cluster. Due to the mutual attraction caused by the clusters, all clusters merge finally. The exchange of synchronization messages itself is not altered by LACAS. Accordingly, LACAS introduces no overhead. Only a not yet used property of synchronization mechanisms is exploited.
Resumo:
We report the first in situ measurements of neutral deuterium originating in the local interstellar medium (LISM) in Earth’s orbit. These measurements were performed with the IBEX-Lo camera on NASA’s interstellar boundary explorer (IBEX) satellite. All data from the spring observation periods of 2009 through 2011 have been analysed. In the three years of the IBEX mission time, the observation geometry and orbit allowed for a total observation time of 115.3 days for the LISM. However, the effects of the spinning spacecraft and the stepping through 8 energy channels mean that we are only observing the interstellar wind for a total time of 1.44 days, in which 2 counts for interstellar deuterium were collected. We report here a conservative number, because a possibility of systematic error or additional noise, though eliminated in our analysis to the best of our knowledge, only supports detection at a 1-sigma level. From these observations, we derive a ratio D/H = (5.8 ± 4.4) × 10-4 at 1 AU. After modelling the transport and loss of D and H from the termination shock to Earth’s orbit, we find that our result of D/HLISM = (1.6 ± 1.2) × 10-5 agrees with D/HLIC = (1.6 ± 0.4) × 10-5 for the local interstellar cloud. This weak interstellar signal is extracted from a strong terrestrial background signal consisting of sputter products from the sensor’s conversion surface. As reference, we accurately measure the terrestrial D/H ratio in these sputtered products and then discriminate this terrestrial background source. Because of the diminishing D and H signal at Earth’s orbit during the rising solar activity due to photoionisation losses and increased photon pressure, our result demonstrates that in situ measurements of interstellar deuterium in the inner heliosphere are only possible during solar minimum conditions.
Resumo:
The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.
Resumo:
A search is performed for collimated muon pairs displaced from the primary vertex produced in the decay of long-lived neutral particles in proton-proton collisions at root s = 7 TeV centre-of-mass energy, with the ATLAS detector at the LHC. In a 1.9 fb(-1) event sample collected during 2011, the observed data are consistent with the Standard Model background expectations. Limits on the product of the production cross section and the branching ratio of a Higgs boson decaying to hidden-sector neutral long-lived particles are derived as a function of the particles' mean lifetime.