151 resultados para Liver Disease
Resumo:
Copper has a role in antioxidant defense, lipid peroxidation, and mitochondrial function, and copper deficiency has been linked to atherogenic dyslipidemia. We aimed to investigate the potential role of copper availability in the pathogenesis of nonalcoholic fatty liver disease (NAFLD).
Resumo:
To test if inflammation also interferes with liver stiffness (LS) assessment in alcoholic liver disease (ALD) and to provide a clinical algorithm for reliable fibrosis assessment in ALD by FibroScan (FS).
Resumo:
Alcohol-induced liver disease (ALD) is a leading cause of nonaccident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively nonspecific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study, the metabolic changes associated with ALD were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-beta-d-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of a metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model.
Resumo:
Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.
Resumo:
Background The evaluation of the hepatic parenchyma in patients with chronic liver disease is important to assess the extension, localization and relationship with adjacent anatomical structures of possible lesions. This is usually performed with conventional abdominal ultrasound, CT-scan or magnetic resonance imaging. In this context, the feasibility and the safety of intravascular ultrasound in the liver have not been assessed yet. Methods We tested the safety and performance of an intracardiac echography (ICE) catheter applied by a transjugular approach into the hepatic veins in patients with chronic liver disease undergoing hepatic hemodynamic measurements. Results Five patients were enrolled in this pilot study. The insertion of the ICE catheter was possible into the right and middle, but not into the left hepatic vein. The position of the ICE was followed using fluoroscopy and external conventional ultrasound. Accurate imaging of focal hepatic parenchymal lesions, Doppler ultrasound of surrounding blood vessels and assessment of liver surface and ascites were achieved without complications. Conclusions This study demonstrated that a diagnostic approach using an ICE device inserted in the hepatic veins is feasible, safe and well tolerated. However, it remains for the moment only an experimental investigative tool. Whether ICE adds further information regarding parenchymal lesions and associated vascular alterations as compared to other techniques, needs additional investigation.
Resumo:
Increased serum bile salt levels have been associated to a single-nucleotide polymorphism in the bile salt export pump (BSEP; ABCB11) in several acquired cholestatic liver diseases but there is little evidence in alcoholic liver disease (ALD). Furthermore, a crosstalk between vitamin D and bile acid synthesis has recently been discovered. Whether this crosstalk has an influence on the course of ALD is unclear to date. Our aim was to analyse the role of genetic polymorphisms in BSEP and the vitamin D receptor gene (NR1I1) on the emergence of cirrhosis in patients with ALD. Therefore, 511 alcoholic patients (131 with cirrhosis and 380 without cirrhosis) underwent ABCB11 genotyping (rs2287622). Of these, 321 (131 with cirrhosis and 190 without cirrhosis) were also tested for NR1I1 polymorphisms (bat-haplotype: BsmI rs1544410, ApaI rs7975232 and TaqI rs731236). Frequencies of ABCB11 and NR1I1 genotypes and haplotypes were compared between alcoholic patients with and without cirrhosis and correlated to serum bile salt, bilirubin and aspartate aminotransferase levels in those with cirrhosis. Frequencies of ABCB11 and NR1I1 genotypes and haplotypes did not differ between the two subgroups and no significant association between genotypes/haplotypes and liver function tests could be determined for neither polymorphism. We conclude that ABCB11 and NR1I1 polymorphisms are obviously not associated with development of cirrhosis in patients with ALD.
Resumo:
Alcoholic liver disease (ALD) accounts for the majority of chronic liver disease in Western countries. The spectrum of ALD includes steatosis with or without fibrosis in virtually all individuals with an alcohol consumption of >80 g/day, alcoholic steatohepatitis of variable severity in 10-35% and liver cirrhosis in approximately 15% of patients. Once cirrhosis is established, there is an annual risk for hepatocellular carcinoma of 1-2%. Environmental factors such as drinking patterns, coexisting liver disease, obesity, diet composition and comedication may modify the natural course of ALD. Twin studies have revealed a substantial contribution of genetic factors to the evolution of ALD, as demonstrated by a threefold higher disease concordance between monozygotic twins and dizygotic twins. With genotyping becoming widely available, a large number of genetic case-control studies evaluating candidate gene variants coding for proteins involved in the degradation of alcohol, mediating antioxidant defence, the evolution and counteraction of necroinflammation and formation and degradation of extracellular matrix have been published with largely unconfirmed, impeached or even disproved associations. Recently, whole genome analyses of large numbers of genetic variants in several chronic liver diseases including gallstone disease, primary sclerosing cholangitis and non-alcoholic fatty liver disease (NAFLD) have identified novel yet unconsidered candidate genes. Regarding the latter, a sequence variation within the gene coding for patatin-like phospholipase encoding 3 (PNPLA3, rs738409) was found to modulate steatosis, necroinflammation and fibrosis in NAFLD. Subsequently, the same variant was repeatedly confirmed as the first robust genetic risk factor for progressive ALD.