20 resultados para Lex Voconia.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This in vitro study evaluated the performance of three ceramic and two commonly used polishing methods on two CAD/CAM ceramics. Surface roughness and quality were compared. A glazed group (GLGR) of each ceramic material served as reference. One-hundred and twenty specimens of VITABLOCS Mark II (VITA) and 120 specimens of IPS Empress CAD (IPS) were roughened in a standardized manner. Twenty VITA and 20 IPS specimens were glazed (VITA Akzent Glaze/Empress Universal Glaze). Five polishing methods were investigated (n=20/group): 1) EVE Diacera W11DC-Set (EVE), 2) JOTA 9812-Set (JOTA), 3) OptraFine-System (OFI), 4) Sof-Lex 2382 discs (SOF) and 5) Brownie/Greenie/Occlubrush (BGO). Polishing quality was measured with a surface roughness meter (Ra and Rz values). The significance level was set at alpha=0.05. Kruskal Wallis tests and pairwise Wilcoxon rank sum tests with Bonferroni-Holm adjustment were used. Qualitative surface evaluation of representative specimens was done with SEM. On VITA ceramics, SOF produced lower Ra (p<0.00001) but higher Rz values than GLGR (p=0.003); EVE, JOTA, OFI and BGO yielded significantly higher Ra and Rz values than GLGR. On IPS ceramics, SOF and JOTA exhibited lower Ra values than GLGR (p<0.0001). Equivalent Ra but significantly higher Rz values occurred between GLGR and EVE, OFI or BGO. VITA and IPS exhibited the smoothest surfaces when polished with SOF. Nevertheless, ceramic polishing systems are still of interest to clinicians using CAD/CAM, as these methods are universally applicable and showed an increased durability compared to the investigated silicon polishers.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.