64 resultados para Lateral hypothalamus
Resumo:
The cyclic peptide Melanin Concentrating Hormone (MCH) is known to control a large number of brain functions in mammals such as food intake and metabolism, stress response, anxiety, sleep/wake cycle, memory, and reward. Based on neuro-anatomical and electrophysiological studies these functions were attributed to neuronal circuits expressing MCHR1, the single MCH receptor in rodents. In complement to our recently published work (1) we provided here new data regarding the action of MCH on ependymocytes in the mouse brain. First, we establish that MCHR1 mRNA is expressed in the ependymal cells of the third ventricle epithelium. Second, we demonstrated a tonic control of MCH-expressing neurons on ependymal cilia beat frequency using in vitro optogenics. Finally, we performed in vivo measurements of CSF flow using fluorescent micro-beads in wild-type and MCHR1-knockout mice. Collectively, our results demonstrated that MCH-expressing neurons modulate ciliary beating of ependymal cells at the third ventricle and could contribute to maintain cerebro-spinal fluid homeostasis.
Resumo:
Rapid-eye movement (REM) sleep correlates with neuronal activity in the brainstem, basal forebrain and lateral hypothalamus. Lateral hypothalamus melanin-concentrating hormone (MCH)-expressing neurons are active during sleep, but their effects on REM sleep remain unclear. Using optogenetic tools in newly generated Tg(Pmch-cre) mice, we found that acute activation of MCH neurons (ChETA, SSFO) at the onset of REM sleep extended the duration of REM, but not non-REM, sleep episodes. In contrast, their acute silencing (eNpHR3.0, archaerhodopsin) reduced the frequency and amplitude of hippocampal theta rhythm without affecting REM sleep duration. In vitro activation of MCH neuron terminals induced GABAA-mediated inhibitory postsynaptic currents in wake-promoting histaminergic neurons of the tuberomammillary nucleus (TMN), and in vivo activation of MCH neuron terminals in TMN or medial septum also prolonged REM sleep episodes. Collectively, these results suggest that activation of MCH neurons maintains REM sleep, possibly through inhibition of arousal circuits in the mammalian brain.
Resumo:
The sleep-wake disorder narcolepsy with cataplexy is associated with the loss of hypocretin-(orexin-) producing neurons in the lateral hypothalamus. Several studies have reported abnormal cerebral activation in patients with narcolepsy with cataplexy. It remains unclear, however, whether these functional changes are related to structural alterations, particularly at the cortical level. To quantify structural brain changes associated with narcolepsy with cataplexy, we used high-resolution T1-weighted magnetic resonance imaging (MRI) in 12 patients compared with 12 healthy participants matched for age and gender. Subcortical and regional cortical volumes were measured using a method unbiased by non-linear registration. Further whole-brain analyses were conducted, measuring cortical characteristics, such as cortical thickness and gyrification, at thousands of points across each hemisphere using validated algorithms. Statistical analyses accounted for an effect of age and gender. We observed decreased cortical volume in the left paracentral lobule and increased cortical volume in the left caudal part of the middle frontal gyrus in narcoleptic patients compared with controls. Cortical thickness in prefrontal areas was inversely correlated with the severity of narcolepsy. Further, we observed several clusters of cortical thinning in patients with childhood or adolescent onset of narcolepsy compared with patients with adult onset of the disease. Our results suggest that specific anatomical changes may differentiate subgroups of narcolepsy patients with different clinical profiles (such as varying symptom severity or different age at onset). Future studies with larger groups of sleepy patients are required to assess whether distinct patterns of anatomical changes may distinguish narcolepsy from non-hypocretin-deficient hypersomnia disorders.
Resumo:
During non-rapid eye movement (NREM) sleep, synchronous synaptic activity in the thalamocortical network generates predominantly low-frequency oscillations (<4 Hz) that are modulated by inhibitory inputs from the thalamic reticular nucleus (TRN). Whether TRN cells integrate sleep-wake signals from subcortical circuits remains unclear. We found that GABA neurons from the lateral hypothalamus (LHGABA) exert a strong inhibitory control over TRN GABA neurons (TRNGABA). We found that optogenetic activation of this circuit recapitulated state-dependent changes of TRN neuron activity in behaving mice and induced rapid arousal during NREM, but not REM, sleep. During deep anesthesia, activation of this circuit induced sustained cortical arousal. In contrast, optogenetic silencing of LHGABA-TRNGABA transmission increased the duration of NREM sleep and amplitude of delta (1-4 Hz) oscillations. Collectively, these results demonstrate that TRN cells integrate subcortical arousal inputs selectively during NREM sleep and may participate in sleep intensity.
Resumo:
Narcolepsy-cataplexy is a sleep-wake disorder and suggested to be immune-mediated, involving genetic and environmental factors. The autoimmune process eventually leads to a loss of hypocretin neurons in the lateral hypothalamus. Epidemiological studies in several countries proved an increased incidence of narcolepsy after H1N1 flu vaccination and infection. This survey in 30 sleep centers in Switzerland led to the identification of 9 H1N1-vaccinated children and adults as newly diagnosed narcolepsy. Clinical features included the abrupt and severe onset of sleepiness, cataplexy and sleep fragmentation.
Resumo:
Non-invasive excitability studies of motor axons in patients with amyotrophic lateral sclerosis (ALS) have revealed a changing pattern of abnormal membrane properties with disease progression, but the heterogeneity of the changes has made it difficult to relate them to pathophysiology. The SOD1(G93A) mouse model of ALS displays more synchronous motoneuron pathology. Multiple excitability measures of caudal and sciatic nerves in mutant and wild-type mice were compared before onset of signs and during disease progression (4-19 weeks), and they were related to changes in muscle fiber histochemistry. Excitability differences indicated a modest membrane depolarization in SOD1(G93A) axons at about the time of symptom onset (8 weeks), possibly due to deficient energy supply. Previously described excitability changes in ALS patients, suggesting altered sodium and potassium conductances, were not seen in the mice. This suggests that those changes relate to features of the human disease that are not well represented in the animal model.
Resumo:
OBJECTIVES: The aim of the present study was to histologically evaluate and compare a new prototype collagen type I/III-containing equine- (EB) and a bovine- (BB) derived cancellous bone block in a dog model. MATERIALS AND METHODS: Four standardized box-shaped defects were bilaterally created at the buccal aspect of the alveolar ridge in the lower jaws of five beagle dogs and randomly allocated to either EB or BB. Each experimental site was covered by a native (non-crosslinked) collagen membrane and left to heal in a submerged position for 12 weeks. Dissected blocks were processed for semi-/and quantitative analyses. RESULTS: Both groups had no adverse clinical or histopathological events (i.e. inflammatory/foreign body reactions). BB specimens revealed no signs of biodegradation and were commonly embedded in a fibrous connective tissue. New bone formation and bony graft integration were minimal. In contrast, EB specimens were characterized by a significantly increased cell (i.e. osteoclasts and multinucleated giant cells)-mediated degradation of the graft material (P<0.001). The amount and extent of bone ingrowth was consistently higher in all EB specimens, but failed to reach statistical significance in comparison with the BB group (P>0.05). CONCLUSIONS: It was concluded that the application of EB may not be associated with an improved bone formation than BB.
Resumo:
Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 microm.
Resumo:
Background Action observation leads to neural activation of the human premotor cortex. This study examined how the level of motor expertise (expert vs. novice) in ballroom dancing and the visual viewpoint (internal vs. external viewpoint) influence this activation within different parts of this area of the brain. Results Sixteen dance experts and 16 novices observed ballroom dance videos from internal or external viewpoints while lying in a functional magnetic resonance imaging scanner. A conjunction analysis of all observation conditions showed that action observation activated distinct networks of premotor, parietal, and cerebellar structures. Experts revealed increased activation in the ventral premotor cortex compared to novices. An internal viewpoint led to higher activation of the dorsal premotor cortex. Conclusions The present results suggest that the ventral and dorsal premotor cortex adopt differential roles during action observation depending on the level of motor expertise and the viewpoint.
Resumo:
The aim of this study is to review the results and clinical outcome of patients with surgically treated lesions within the trigone of the lateral ventricle. This is a retrospective case series of 20 (eight male, 12 female) patients with lesions of the trigone of the lateral ventricle operated between 1998 and 2008. All lesions were removed via the transcortical temporal and transcortical parietal route. Surgical complications and outcome were assessed using the modified Rankin Scale (mRS). There were four children and 16 adults with a mean age of 42?±?22 years (min?=?1, max?=?74). Eight (40%) lesions grew within the trigone of the dominant hemisphere. In 17 cases, the lesion was purely intraventricular, and in three cases, a slight paraventricular extension was seen. The mean size was 4.5 cm of maximal diameter. Surgical removal was achieved via the transcortical parietal route in 13 cases (65%) and the transcortical temporal route in seven cases (35%). In all cases, complete resection was possible. According to the mRS, 13 patients improved, five remained the same, and two were lost to follow-up. One patient had an increased visual field deficit postoperatively and new hemiparesis and aphasia, but returned to the preoperative level within a few weeks. In one patient, an acute myocardial infarction occurred due to previous cardiac stent placement and in-stent stenosis. Even large trigonal lesions can be resected with low morbidity using a transcortical approach depending on the peritrigonal extension of the tumor.
Resumo:
Genital prolapse is frequent and can be found in about 50% of parous women. Its etiology is complex and multifactorial. Predisposing factors include: genetics (connective tissue disorders, family history); general state (age, parity, weight, smoking, obstructive pulmonary disease); trauma (carrying heavy loads, intense physical exercise); or iatrogenic (post hysterectomy). Treatment can be conservative or surgical and depends mainly on the severity of symptoms. Developments in surgical techniques and synthetic material in the last 20 years enabled us to use minimally invasive procedures with improved post operative course and decreased recurrence rates.
Resumo:
In implant dentistry, there is a need for synthetic bone substitute blocks to support ridge augmentation in situations where large bone volumes are missing. Polycaprolactone-based scaffolds demonstrated excellent results in bone tissue engineering applications. The use of customized polycaprolactone-tricalcium phosphate (PCL-TCP) displayed promising results from recent rat femur and rabbit calvaria studies. However, data from clinically representative models in larger animals do not exist.