58 resultados para Intrinsic cardiac nervous system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The brain is in many ways an immunologically and pharmacologically privileged site. The blood-brain barrier (BBB) of the cerebrovascular endothelium and its participation in the complex structure of the neurovascular unit (NVU) restrict access of immune cells and immune mediators to the central nervous system (CNS). In pathologic conditions, very well-organized immunologic responses can develop within the CNS, raising important questions about the real nature and the intrinsic and extrinsic regulation of this immune privilege. We assess the interactions of immune cells and immune mediators with the BBB and NVU in neurologic disease, cerebrovascular disease, and intracerebral tumors. The goals of this review are to outline key scientific advances and the status of the science central to both the neuroinflammation and CNS barriers fields, and highlight the opportunities and priorities in advancing brain barriers research in the context of the larger immunology and neuroscience disciplines. This review article was developed from reports presented at the 2011 Annual Blood-Brain Barrier Consortium Meeting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cavernous malformations (CCMs) are benign, well-circumscribed, and mulberry-like vascular malformations that may be found in the central nervous system in up to 0.5% of the population. Cavernous malformations can be sporadic or inherited. The common symptoms are epilepsy, hemorrhages, focal neurological deficits, and headaches. However, CCMs are often asymptomatic. The familiar form is associated with three gene loci, namely 7q21-q22 (CCM1), 7p13-p15 (CCM2), and 3q25.2-q27 (CCM3) and is inherited as an autosomal dominant trait with incomplete penetrance. The CCM genes are identified as Krit 1 (CCM1), MGC4607 (CCM2), and PDCD10 (CCM3). Here, we present the clinical and genetic features of CCMs in 19 Swiss families. Furthermore, surgical aspects in such families are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring pathology/regeneration in experimental models of de-/remyelination requires an accurate measure not only of functional changes but also of the amount of myelin. We tested whether X-ray diffraction (XRD), which measures periodicity in unfixed myelin, can assess the structural integrity of myelin in fixed tissue. From laboratories involved in spinal cord injury research and in studying the aging primate brain, we solicited "blind" samples and used an electronic detector to record rapidly the diffraction patterns (30 min each pattern) from them. We assessed myelin integrity by measuring its periodicity and relative amount. Fixation of tissue itself introduced +/-10% variation in periodicity and +/-40% variation in relative amount of myelin. For samples having the most native-like periods, the relative amounts of myelin detected allowed distinctions to be made between normal and demyelinating segments, between motor and sensory tracts within the spinal cord, and between aged and young primate CNS. Different periodicities also allowed distinctions to be made between samples from spinal cord and nerve roots and between well-fixed and poorly fixed samples. Our findings suggest that, in addition to evaluating the effectiveness of different fixatives, XRD could also be used as a robust and rapid technique for quantitating the relative amount of myelin among spinal cords and other CNS tissue samples from experimental models of de- and remyelination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cavernous malformations (CM) of the central nervous system are vascular malformations responsible for symptoms such as seizures, headache, and neurological deficits: 25% of cases already present in childhood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perineurioma is an uncommon, mostly benign, spindle-cell tumor of peripheral nerve sheath origin with a predilection for the soft tissues. Although increasing awareness points to the sites of involvement by perineurioma possibly being as ubiquitous as those frequented by schwannian tumors, only one intracerebral example has been described to date. We report on a surgically resected perineurioma of the falx cerebri in an 86-year-old woman. Preoperative imaging showed an enhancing extraaxial mass of 6 cm × 5.7 cm × 3.7 cm. Histologically, the tumor consisted of a proliferation of spindle cells interwoven by a lattice of basal lamina. Alongside a prevailing soft tissue perineurioma pattern, sclerosing and reticular areas were seen as well. Tumor cells coexpressed EMA and GLUT-1, and a minority immunoreacted for smooth muscle actin. Pericellular basal lamina was decorated with collagen type IV. No staining for S100 protein was detected. Mitotic activity was virtually absent, and the MIB1 labeling index averaged 2%. Ultrastructural examination revealed abundant pinocytotic vesicles within and conspicuous tight junctions between slender cytoplasmic processes which, in turn, were encased by discontinuous basal lamina. FISH analysis confirmed loss of at least part of one chromosome 22q. This observation calls attention to perineurioma as a novel item in the repertoire of low-grade meningial spindle cell neoplasms, in the differential diagnostic context of which it is apt to being misconstrued as either meningioma, solitary fibrous tumor, or neurofibroma. Confusion with the latter bears the risk of overgrading innocuous features of perineurioma as criteria for malignancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system involvement is a rare and serious complication of Behçet's disease (BD). Herein, we describe a patient with an atypical central lesion, who experienced progressive hypesthesia of the right arm and sensory loss of the trigeminal nerve together with intense headache. A repeated biopsy was necessary to conclusively establish the diagnosis of BD. Therapy with infusions of infliximab led to a remarkable full remission. TNFα-blocking therapy was successfully replaced by azathioprine. The present well-illustrated case demonstrates the difficulty of establishing the diagnosis of BD with central nervous system involvement, the dramatic benefit of short given TNF-α-blocking agent, and the long-term remission with azathioprin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homeostasis within the central nervous system (CNS) is a prerequisite to elicit proper neuronal function. The CNS is tightly sealed from the changeable milieu of the blood stream by the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB). Whereas the BBB is established by specialized endothelial cells of CNS microvessels, the BCSFB is formed by the epithelial cells of the choroid plexus. Both constitute physical barriers by a complex network of tight junctions (TJs) between adjacent cells. During many CNS inflammatory disorders, such as multiple sclerosis, human immunodeficiency virus infection, or Alzheimer's disease, production of pro-inflammatory cytokines, matrix metalloproteases, and reactive oxygen species are responsible for alterations of CNS barriers. Barrier dysfunction can contribute to neurological disorders in a passive way by vascular leakage of blood-borne molecules into the CNS and in an active way by guiding the migration of inflammatory cells into the CNS. Both ways may directly be linked to alterations in molecular composition, function, and dynamics of the TJ proteins. This review summarizes current knowledge on the cellular and molecular aspects of the functional and dysfunctional TJ complexes at the BBB and the BCSFB, with a particular emphasis on CNS inflammation and the role of reactive oxygen species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arterial hypertension is a chronic disease with a therapeutical challenge for the patient and the physician involved. Patient-independent techniques with good efficacy and tolerability are wanted. The autonomous nervous system insufficiently therapeutically exploited to date, is now approachable by two types of intervention: renal nerve ablation, an endovascular approach without remaining foreign body, and BAT, baroreflex activating therapy using an implantable device stimulating the carotid sinus. The blood pressure lowering potency of BAT appears more than with renal nerve ablation and also clinical study data are more prevalent. With both treatment options the patients having the most profit are insufficiently defined. Given this knowledge, any form of secondary hypertension needs to be excluded beforehand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The risk of sudden death is increased in athletes with a male predominance. Regular physical activity increases vagal tone, and may protect against exercise-induced ventricular arrhythmias. We investigated training-related modulations of the autonomic nervous system in female and male endurance athletes. Runners of a 10-mile race were invited. Of 873 applicants, 68 female and 70 male athletes were randomly selected and stratified according to their average weekly training hours in a low (≤4 h) and high (>4 h) volume training group. Analysis of heart rate variability was performed over 24 h. Spectral components (high frequency [HF] and low frequency [LF] power in normalized units) were analyzed for hourly 5 min segments and averaged for day- and nighttime. One hundred and fourteen athletes (50 % female, mean age 42 ± 7 years) were included. No significant gender difference was observed for training volume and 10-mile race time. Over the 24-h period, female athletes exhibited a higher HF and lower LF power for each hourly time-point. Female gender and endurance training hours were independent predictors of a higher HF and lower LF power. In female athletes, higher training hours were associated with a higher HF and lower LF power during nighttime. In male athletes, the same was true during daytime. In conclusion, female and male athletes showed a different circadian pattern of the training-related increase in markers of vagal tone. For a comparable amount of training volume, female athletes maintained their higher markers of vagal tone, possibly indicating a superior protection against exercise-induced ventricular arrhythmias.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is no consensus regarding optimal dosing of high dose methotrexate (HDMTX) in patients with primary CNS lymphoma. Our aim was to develop a convenient dosing algorithm to target AUC(MTX) in the range between 1000 and 1100 µmol l(-1) h.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central nervous system (CNS) comprises the brain, spinal cord, optic nerves and retina, and contains post-mitotic, delicate cells. As the rigid coverings of the CNS render swelling dangerous and destructive, inflammatory reactions must be carefully controlled in CNS tissues. Nevertheless, effector immune responses that protect the host during CNS infection still occur in the CNS. Here, we describe the anatomical and cellular basis of immune surveillance in the CNS, and explain how this shapes the unique immunology of these tissues. The Review focuses principally on insights gained from the study of autoimmune responses in the CNS and to a lesser extent on models of infectious disease. Furthermore, we propose a new model to explain how antigen-specific T cell responses occur in the CNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To perform their distinct effector functions, pathogen-specific T cells have to migrate to target tissue where they recognize antigens and produce cytokines that elicit appropriate types of protective responses. Similarly, migration of pathogenic self-reactive T cells to target organs is an essential step required for tissue-specific autoimmunity. In this article, we review data from our laboratory as well as other laboratories that have established that effector function and migratory capacity are coordinately regulated in different T-cell subsets. We then describe how pathogenic T cells can enter into intact or inflamed central nervous system (CNS) to cause experimental autoimmune encephalomyelitis or multiple sclerosis. In particular, we elaborate on the role of CCR6/CCL20 axis in migration through the choroid plexus and the involvement of this pathway in immune surveillance of and autoimmunity in the CNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The central nervous system (CNS) has long been regarded as an immune privileged organ implying that the immune system avoids the CNS to not disturb its homeostasis, which is critical for proper function of neurons. Meanwhile, it is accepted that immune cells do in fact gain access to the CNS and that immune responses can be mounted within this tissue. However, the unique CNS microenvironment strictly controls these immune reactions starting with tightly controlling immune cell entry into the tissue. The endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid (CSF) barrier, which protect the CNS from the constantly changing milieu within the bloodstream, also strictly control immune cell entry into the CNS. Under physiological conditions, immune cell migration into the CNS is kept at a very low level. In contrast, during a variety of pathological conditions of the CNS such as viral or bacterial infections, or during inflammatory diseases such as multiple sclerosis, immunocompetent cells readily traverse the BBB and likely also the choroid plexus and subsequently enter the CNS parenchyma or CSF spaces. This chapter summarizes our current knowledge of immune cell entry across the blood CNS barriers. A large body of the currently available information on immune cell entry into the CNS has been derived from studying experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Therefore, most of this chapter discussing immune cell entry during CNS pathogenesis refers to observations in the EAE model, allowing for the possibility that other mechanisms of immune cell entry into the CNS might apply under different pathological conditions such as bacterial meningitis or stroke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We sought to determine whether a high-risk group could be defined among patients with operable breast cancer in whom a search of occult central nervous system (CNS) metastases was justified. PATIENTS AND METHODS: We evaluated data from 9524 women with early breast cancer (42% node-negative) who were randomized in International Breast Cancer Study Group clinical trials between 1978 and 1999, and treated without anthracyclines, taxanes, or trastuzumab. We identified patients whose site of first event was CNS and those who had a CNS event at any time. RESULTS: Median follow-up was 13 years. The 10-year incidence (10-yr) of CNS relapse was 5.2% (1.3% as first recurrence). Factors predictive of CNS as first recurrence included: node-positive disease (10-yr = 2.2% for > 3 N+), estrogen receptor-negative (2.3%), tumor size > 2 cm (1.7%), tumor grade 3 (2.0%), < 35 years old (2.2%), HER2-positive (2.7%), and estrogen receptor-negative and node-positive (2.6%). The risk of subsequent CNS recurrence was elevated in patients experiencing lung metastases (10-yr = 16.4%). CONCLUSION: Based on this large cohort we were able to define risk factors for CNS metastases, but could not define a group at sufficient risk to justify routine screening for occult CNS metastases.