34 resultados para Indoleamine-2,3-dioxygenase (IDO)
Resumo:
Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immunity. T-cell proliferation and differentiation to effector cells require increased glucose consumption, aerobic glycolysis and glutaminolysis. The effect of IDO on the above metabolic pathways was evaluated in alloreactive T-cells. Mixed lymphocyte reaction (MLR) in the presence or not of the IDO inhibitor, 1-DL-methyl-tryptophane (1-MT), was used. In MLRs, 1-MT decreased tryptophan consumption, increased cell proliferation, glucose influx and lactate production, whereas it decreased tricarboxylic acid cycle activity. In T-cells, from the two pathways that could sense tryptophan depletion, i.e. general control nonrepressed 2 (GCN2) kinase and mammalian target of rapamycin complex 1, 1-MT reduced only the activity of the GCN2 kinase. Additionally 1-MT treatment of MLRs altered the expression and/or the phosphorylation state of glucose transporter-1 and of key enzymes involved in glucose metabolism and glutaminolysis in alloreactive T-cells in a way that favors glucose influx, aerobic glycolysis and glutaminolysis. Thus in alloreactive T-cells, IDO through activation of the GCN2 kinase, decreases glucose influx and alters key enzymes involved in metabolism, decreasing aerobic glycolysis and glutaminolysis. Acting in such a way, IDO could be considered as a constraining factor for alloreactive T-cell proliferation and differentiation to effector T-cell subtypes.
Resumo:
BackgroundBacterial meningitis (BM) is characterized by an intense host inflammatory reaction, which contributes to the development of brain damage and neuronal sequelae. Activation of the kynurenine (KYN) pathway (KP) has been reported in various neurological diseases as a consequence of inflammation. Previously, the KP was shown to be activated in animal models of BM, and the association of the SNP AADAT¿+¿401C/T (kynurenine aminotransferase II - KAT II) with the host immune response to BM has been described. The aim of this study was to investigate the involvement of the KP during BM in humans by assessing the concentrations of KYN metabolites in the cerebrospinal fluid (CSF) of BM patients and their relationship with the inflammatory response compared to aseptic meningitis (AM) and non-meningitis (NM) groups.MethodsThe concentrations of tryptophan (TRP), KYN, kynurenic acid (KYNA) and anthranilic acid (AA) were assessed by HPLC from CSF samples of patients hospitalized in the Giselda Trigueiro Hospital in Natal (Rio Grande do Norte, Brazil). The KYN/TRP ratio was used as an index of indoleamine 2,3-dioxygenase (IDO) activity, and cytokines were measured using a multiplex cytokine assay. The KYNA level was also analyzed in relation to AADAT¿+¿401C/T genotypes.ResultsIn CSF from patients with BM, elevated levels of KYN, KYNA, AA, IDO activity and cytokines were observed. The cytokines INF-¿ and IL-1Ra showed a positive correlation with IDO activity, and TNF-¿ and IL-10 were positively correlated with KYN and KYNA, respectively. Furthermore, the highest levels of KYNA were associated with the AADAT¿+¿401 C/T variant allele.ConclusionThis study suggests a downward modulatory effect of the KP on CSF inflammation during BM.
Resumo:
The antioxidant properties of tryptophan and some of its oxidative metabolites were examined by measuring how efficiently they inhibited peroxyl radical-mediated oxidation of phosphatidylcholine liposomes and B-phycoerythrin. Low micromolar concentrations of 5-hydroxytryptophan, 3-hydroxykynurenine, xanthurenic acid, or 3-hydroxyanthranilic acid, but not their corresponding nonhydroxylated metabolic precursors, scavenged peroxyl radicals with high efficiency. In particular, 3-hydroxykynurenine and 3-hydroxyanthranilic acid protected B-phycoerythrin from peroxyl radical-mediated oxidative damage more effectively than equimolar amounts of either ascorbate or Trolox (a water-soluble analog of vitamin E). Enzyme activities involved or related to oxidative tryptophan metabolism, as well as endogenous concentrations of tryptophan and its metabolites, were determined within tissues of mice suffering from acute viral pneumonia. Infection resulted in a 100-fold induction of pulmonary indoleamine 2,3-dioxygenase (EC 1.13.11.17) as reported [Yoshida, R., Urade, Y., Tokuda, M. ; Hayaishi, O. (1979) Proc. Natl. Acad. Sci. USA 76, 4084-4086]. This was accompanied by a 16- and 3-fold increase in the levels of lung kynurenine and 3-hydroxykynurenine, respectively. In contrast, endogenous concentrations of tryptophan and xanthurenic acid did not increase and 3-hydroxyanthranilic acid could not be detected. The activity of the superoxide anion (O2-.)-producing enzyme xanthine oxidase increased 3.5-fold during infection while that of the O2-.-removing superoxide dismutase decreased to 50% of control levels. These results plus the known requirement of indoleamine 2,3-dioxygenase for superoxide anion for catalytic activity suggest that viral pneumonia is accompanied by oxidative stress and that induction of indoleamine 2,3-dioxygenase may represent a local antioxidant defence against this and possibly other types of inflammatory diseases.
Resumo:
Recent investigations of the tumor microenvironment have shown that many tumors are infiltrated by inflammatory and lymphocytic cells. Increasing evidence suggests that the number, type and location of these tumor-infiltrating lymphocytes in primary tumors has prognostic value, and this has led to the development of an 'immunoscore. As well as providing useful prognostic information, the immunoscore concept also has the potential to help predict response to treatment, thereby improving decision- making with regard to choice of therapy. This predictive aspect of the tumor microenvironment forms the basis for the concept of immunoprofiling, which can be described as 'using an individual's immune system signature (or profile) to predict that patient's response to therapy' The immunoprofile of an individual can be genetically determined or tumor-induced (and therefore dynamic). Ipilimumab is the first in a series of immunomodulating antibodies and has been shown to be associated with improved overall survival in patients with advanced melanoma. Other immunotherapies in development include anti-programmed death 1 protein (nivolumab), anti-PD-ligand 1, anti-CD137 (urelumab), and anti-OX40. Biomarkers that can be used as predictive factors for these treatments have not yet been clinically validated. However, there is already evidence that the tumor microenvironment can have a predictive role, with clinical activity of ipilimumab related to high baseline expression of the immune-related genes FoxP3 and indoleamine 2,3-dioxygenase and an increase in tumor-infiltrating lymphocytes. These biomarkers could represent the first potential proposal for an immunoprofiling panel in patients for whom anti-CTLA-4 therapy is being considered, although prospective data are required. In conclusion, the evaluation of systemic and local immunological biomarkers could offer useful prognostic information and facilitate clinical decision making. The challenge will be to identify the individual immunoprofile of each patient and the consequent choice of optimal therapy or combination of therapies to be used.
Resumo:
After organ transplantation, recipient T cells contribute to graft rejection. Mesenchymal stromal cells from the bone marrow (BM-MSCs) are known to suppress allogeneic T-cell responses, suggesting a possible clinical application of MSCs in organ transplantation. Human liver grafts harbor resident populations of MSCs (L-MSCs). We aimed to determine the immunosuppressive effects of these graft-derived MSCs on allogeneic T-cell responses and to compare these with the effects of BM-MSCs. BM-MSCs were harvested from aspirates and L-MSCs from liver graft perfusates. We cultured them for 21 days and compared their suppressive effects with the effects of BM-MSCs on allogeneic T-cell responses. Proliferation, cytotoxic degranulation, and interferon-gamma production of alloreactive T cells were more potently suppressed by L-MSCs than BM-MSCs. Suppression was mediated by both cell-cell contact and secreted factors. In addition, L-MSCs showed ex vivo a higher expression of PD-L1 than BM-MSCs, which was associated with inhibition of T-cell proliferation and cytotoxic degranulation in vitro. Blocking PD-L1 partly abrogated the inhibition of cytotoxic degranulation by L-MSCs. In addition, blocking indoleamine 2,3-dioxygenase partly abrogated the inhibitive effects of L-MSCs, but not BM-MSCs, on T-cell proliferation. In conclusion, liver graft-derived MSC suppression of allogeneic T-cell responses is stronger than BM-MSCs, which may be related to in situ priming and mobilization from the graft. These graft-derived MSCs may therefore be relevant in transplantation by promoting allohyporesponsiveness.
Resumo:
Clinical, postmortem and preclinical research strongly implicates dysregulation of glutamatergic neurotransmission in major depressive disorder (MDD). Recently, metabotropic glutamate receptors (mGluRs) have been proposed as attractive targets for the discovery of novel therapeutic approaches against depression. The aim of this study was to examine mGluR2/3 protein levels in the prefrontal cortex (PFC) from depressed subjects. In addition, to test whether antidepressants influence mGluR2/3 expression we also studied levels of mGluR2/3 in fluoxetine-treated monkeys. Postmortem human prefrontal samples containing Brodmann's area 10 (BA10) were obtained from 11 depressed and 11 psychiatrically healthy controls. Male rhesus monkeys were treated chronically with fluoxetine (dose escalated to 3mg/kg, p.o.; n=7) or placebo (n=6) for 39 weeks. The mGluR2/3 immunoreactivity was investigated using Western blot method. There was a robust (+67%) increase in the expression of the mGlu2/3 protein in the PFC of depressed subjects relative to healthy controls. The expression of mGlu2/3 was unchanged in the PFC of monkeys treated with fluoxetine. Our findings provide the first evidence that mGluR2/3 is elevated in the PFC in MDD. This observation is consistent with reports showing that mGluR2/3 antagonists exhibit antidepressant-like activity in animal models and demonstrates that these receptors are promising targets for the discovery of novel antidepressants.
Resumo:
In the crystal structure of the title compound (systematic name: 2,3-dichlorobenzene-1,4-diol 2,3-dichlorocyclohexa-2,5-diene-1,4-dione monohydrate), C(6)H(4)Cl(2)O(2)center dot C(6)H(2)Cl(2)O(2)center dot H(2)O, the 2,3-dichloro-1,4-hydroquinone donor (D) and the 2,3-dichloro-1,4-benzoquinone acceptor (A) molecules form alternating stacks along [100]. Their molecular planes [maximum deviations for non-H atoms: 0.0133 (14) (D) and 0.0763 (14) angstrom (A)] are inclined to one another by 1.45 (3)degrees and are thus almost parallel. There are pi-pi interactions involving the D and A molecules, with centroid-centroid distances of 3.5043 (9) and 3.9548 (9) angstrom. Intermolecular O-H center dot center dot center dot O hydrogen bonds involving the water molecule and the hydroxy and ketone groups lead to the formation of two-dimensional networks lying parallel to (001). These networks are linked by C-H center dot center dot center dot O interactions, forming a three-dimensional structure.
Resumo:
In this article we review the phenomenological consequences of radiative flavor-violation (RFV) in the MSSM. In the model under consideration the U(3)^3 flavor symmetry of the gauge sector is broken in a first step to U(2)^3 by the top and bottom Yukawa couplings of the superpotential (and possibly also by the bilinear SUSY-breaking terms). In a second step the remaining U(2)^3 flavor symmetry is softly broken by the trilinear A-terms in order to obtain the measured quark masses and the CKM matrix of the Standard Model (SM) at low energies. The phenomenological implications of this model depend on the actual choice of the SUSY breaking A-terms. If the CKM matrix is generated in the down sector (by A^d), Bs->mu^+mu^- receives non-decoupling contributions from Higgs penguins which become important already for moderate values of tan(beta). Also the Bs mixing amplitude can be significantly modified compared to the SM prediction including a potential induction of a new CP-violating phase (which is not possible in the MSSM with MFV).
Resumo:
Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.