59 resultados para Immunoglobulin Superfamily
Resumo:
We have cloned the platelet collagen receptor glycoprotein (GP) VI from a human bone marrow cDNA library using rapid amplification of cDNA ends with platelet mRNA to complete the 5' end sequence. GPVI was isolated from platelets using affinity chromatography on the snake C-type lectin, convulxin, as a critical step. Internal peptide sequences were obtained, and degenerate primers were designed to amplify a fragment of the GPVI cDNA, which was then used as a probe to screen the library. Purified GPVI, as well as Fab fragments of polyclonal antibodies made against the receptor, inhibited collagen-induced platelet aggregation. The GPVI receptor cDNA has an open reading frame of 1017 base pairs coding for a protein of 339 amino acids including a putative 23-amino acid signal sequence and a 19-amino acid transmembrane domain between residues 247 and 265. GPVI belongs to the immunoglobulin superfamily, and its sequence is closely related to FcalphaR and to the natural killer receptors. Its extracellular chain has two Ig-C2-like domains formed by disulfide bridges. An arginine residue is found in position 3 of the transmembrane portion, which should permit association with Fcgamma and its immunoreceptor tyrosine-based activation motif via a salt bridge. With 51 amino acids, the cytoplasmic tail is relatively long and shows little homology to the C-terminal part of the other family members. The ability of the cloned GPVI cDNA to code for a functional platelet collagen receptor was demonstrated in the megakaryocytic cell line Dami. Dami cells transfected with GPVI cDNA mobilized intracellular Ca(2+) in response to collagen, unlike the nontransfected or mock transfected Dami cells, which do not respond to collagen.
Resumo:
The fusion of mammalian cells into syncytia is a developmental process that is tightly restricted to a limited subset of cells. Besides gamete and placental trophoblast fusion, only macrophages and myogenic stem cells fuse into multinucleated syncytia. In contrast to viral cell fusion, which is mediated by fusogenic glycoproteins that actively merge membranes, mammalian cell fusion is poorly understood at the molecular level. A variety of mammalian transmembrane proteins, among them many of the immunoglobulin superfamily, have been implicated in cell-cell fusion, but none has been shown to actively fuse cells in vitro. Here we report that the FGFRL1 receptor, which is up-regulated during the differentiation of myoblasts into myotubes, fuses cultured cells into large, multinucleated syncytia. We used luciferase and GFP-based reporter assays to confirm cytoplasmic mixing and to identify the fusion inducing domain of FGFRL1. These assays revealed that Ig-like domain III and the transmembrane domain are both necessary and sufficient to rapidly fuse CHO cells into multinucleated syncytia comprising several hundred nuclei. Moreover, FGFRL1 also fused HEK293 and HeLa cells with untransfected CHO cells. Our data show that FGFRL1 is the first mammalian protein that is capable of inducing syncytium formation of heterologous cells in vitro.
Resumo:
Leucocyte migration into the central nervous system is a key stage in the development of multiple sclerosis. While much has been learnt regarding the sequential steps of leucocyte capture, adhesion and migration across the vasculature, the molecular basis of leucocyte extravasation is only just being unravelled. It is now recognized that bidirectional crosstalk between the immune cell and endothelium is an essential element in mediating diapedesis during both normal immune surveillance and under inflammatory conditions. The induction of various signalling networks, through engagement of cell surface molecules such as integrins on the leucocyte and immunoglobulin superfamily cell adhesion molecules on the endothelial cell, play a major role in determining the pattern and route of leucocyte emigration. In this review we discuss the extent of our knowledge regarding leucocyte migration across the blood-brain barrier and in particular the endothelial cell signalling pathways contributing to this process.
Resumo:
Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.
Resumo:
Although it is well established that stromal intercellular adhesion molecule-1 (ICAM-1), ICAM-2, and vascular cell adhesion molecule-1 (VCAM-1) mediate lymphocyte recruitment into peripheral lymph nodes (PLNs), their precise contributions to the individual steps of the lymphocyte homing cascade are not known. Here, we provide in vivo evidence for a selective function for ICAM-1 > ICAM-2 > VCAM-1 in lymphocyte arrest within noninflamed PLN microvessels. Blocking all 3 CAMs completely inhibited lymphocyte adhesion within PLN high endothelial venules (HEVs). Post-arrest extravasation of T cells was a 3-step process, with optional ICAM-1-dependent intraluminal crawling followed by rapid ICAM-1- or ICAM-2-independent diapedesis and perivascular trapping. Parenchymal motility of lymphocytes was modestly reduced in the absence of ICAM-1, while ICAM-2 and alpha4-integrin ligands were not required for B-cell motility within follicles. Our findings highlight nonredundant functions for stromal Ig family CAMs in shear-resistant lymphocyte adhesion in steady-state HEVs, a unique role for ICAM-1 in intraluminal lymphocyte crawling but redundant roles for ICAM-1 and ICAM-2 in lymphocyte diapedesis and interstitial motility.
Resumo:
The induction of cell death in immune cells by naturally occurring antibodies specific for death receptors may present an important antiinflammatory mechanism of intravenous immunoglobulin (IVIG). Conversely, the protection of tissue cells from death receptor-mediated apoptosis by blocking antibodies is thought to contribute to the beneficial effects of IVIG in certain inflammatory disorders such as toxic epidermal necrolysis, also known as Lyell's syndrome. In this review, we focus on recent insights into the role of functional antibodies against Fas, sialic acid-binding immunoglobulin-like lectin (Siglec)-8, and Siglec-9 receptors in IVIG-mediated cell survival or death effects. In addition, we examine a variety of factors in inflammatory disease that may interplay with these cellular events and influence the therapeutic efficacy or potency of IVIG. These involve activation status of the target cell, cytokine microenvironment, pathogenesis and stage of disease, individual genetic determinants, species characteristics, and batch-to-batch variations of IVIG preparations.
Resumo:
Different therapeutic approaches have been used in fetal-neonatal alloimmune thrombocytopenia, but many centers administer immunoglobulin G infusions to the pregnant woman. We studied the effect of maternal antenatal immunoglobulin infusions on fetal platelet counts in pregnancies with fetal alloimmune thrombocytopenia.
Resumo:
Intravenous immunoglobulin (IVIG) is the first-line therapy for multifocal motor neuropathy (MMN). This open-label multi-centre study (NCT00701662) assessed the efficacy, safety, and convenience of subcutaneous immunoglobulin (SCIG) in patients with MMN over 6 months, as an alternative to IVIG. Eight MMN patients (42-66 years), on stable IVIG dosing, received weekly SCIG at doses equivalent to previous IVIG using a "smooth transition protocol". Primary efficacy endpoint was the change from baseline to week 24 in muscle strength. Disability, motor function, and health-related quality of life (HRQL) endpoints were also assessed. One patient deteriorated despite dose increase and was withdrawn. Muscle strength, disability, motor function, and health status were unchanged in all seven study completers who rated home treatment as extremely good. Four experienced 18 adverse events, of which only two were moderate. This study suggests that MMN patients with stable clinical course on regular IVIG can be switched to SCIG at the same monthly dose without deterioration and with a sustained overall improvement in HRQL.
Resumo:
The following recommendations, which aim at standardising and rationalising the clinical indications for administering polyclonal immunoglobulins in Belgium, were drawn up by a working group of the Superior Health Council. To this end, the Superior Health Council organised an expert meeting devoted to"Guidelines for the use of immunoglobulins". The experts discussed the indications for immunoglobulin use, the'ideal'immunoglobulin preparation, its mechanisms of action, the practical issues involved in administering immunoglobulins and their potential side effects. The recommendations formulated by the experts were validated by the Superior Health Council working group with the purpose of harmonising immunoglobulin use in Belgium
Resumo:
The review summarizes the recent progress that has been made in understanding the function of immunoglobulin A (IgA) in promoting a healthy mutualism with the commensal microbiota and protecting against pathogens. Although IgA is by far the most abundant antibody produced by mammals, direct experimental evidence for its function is still lacking.
Resumo:
The effect of induction of parturition with a PGF(2)alpha analog on plasma concentration of prolactin (PRL) and its effects on colostrum concentration of IgG and chitotriosidase (ChT) activity were studied in 16 pregnant Majorera goats. Treated goats, those in which parturition was induced, had greater concentrations of PRL than control goats 24 h before parturition (P < 0.05) and 48 h after parturition (P < 0.05). Control goats had greater concentrations of PRL than treated goats 96 h after parturition (P < 0.05). Plasma concentration of IgG did not differ between groups during the experimental period, but colostrum concentrations of IgG were greater in control goats than in treated goats at parturition (P < 0.05). Plasma ChT activity decreased during the period 72 h before parturition to 24 h after parturition in control and treated goats. Time evolution after partum affected the colostrum ChT activity, being greater at parturition than after parturition in both groups (P < 0.05). In summary, concentration of IgG in colostrum is slightly diminished if parturition is induced. Induction of parturition causes an early increase in PRL, which is most likely responsible for preterm suppression of IgG transport into mammary secretions. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
It was a long way from the use of hyperimmune animal sera for the treatment of toxin-producing infections to the production of polyclonal, polyspecific human immunoglobulin preparations and the use of NAbs as therapeutic tools for autoimmune and inflammatory diseases. Some highlights of the development of knowledge in blood fractionation techniques, basic science and clinical wisdom are reviewed in this chapter. Proudly we mention the outstanding contribution of Swiss scientists and clinicians in the development of IVIG as clinical tool for some otherwise untreatable diseases or taking advantage of its low adverse event profile in long-term treatment of other chronic autoimmune and inflammatory diseases. This chapter summarizes some of the characteristics and the effects in humans of NAbs which are present in IgG concentrates. We call attention to the fact that the human data remain, at least in part, incomplete, among others because even with the most efficient large-scale techniques available not more than approximately 50% of the total IgG in plasma can be fractionated into an immunoglobulin G concentrate.