73 resultados para Human Symbolic Thinking and Acting


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell therapies for articular cartilage defects rely on expanded chondrocytes. Mesenchymal stem cells (MSC) represent an alternative cell source should their hypertrophic differentiation pathway be prevented. Possible cellular instruction between human articular chondrocytes (HAC) and human bone marrow MSC was investigated in micromass pellets. HAC and MSC were mixed in different percentages or incubated individually in pellets for 3 or 6 weeks with and without TGF-beta1 and dexamethasone (±T±D) as chondrogenic factors. Collagen II, collagen X and S100 protein expression were assessed using immunohistochemistry. Proteoglycan synthesis was evaluated applying the Bern score and quantified using dimethylmethylene blue dye binding assay. Alkaline phosphatase activity (ALP) was detected on cryosections and soluble ALP measured in pellet supernatants. HAC alone generated hyaline-like discs, while MSC formed spheroid pellets in ±T±D. Co-cultured pellets changed from disc to spheroid shape with decreasing number of HAC, and displayed random cell distribution. In -T-D, HAC expressed S100, produced GAG and collagen II, and formed lacunae, while MSC did not produce any cartilage-specific proteins. Based on GAG, collagen type II and S100 expression chondrogenic differentiation occurred in -T-D MSC co-cultures. However, quantitative experimental GAG and DNA values did not differ from predicted values, suggesting only HAC contribution to GAG production. MSC produced cartilage-specific matrix only in +T+D but underwent hypertrophy in all pellet cultures. In summary, influence of HAC on MSC was restricted to early signs of neochondrogenesis. However, MSC did not contribute to the proteoglycan deposition, and HAC could not prevent hypertrophy of MSC induced by chondrogenic stimuli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of prolonged electroporation-mediated human interleukin-10 (hIL-10) overexpression 24 hours before transplantation, combined with sequential human hepatocyte growth factor (HGF) overexpression into skeletal muscle on day 5, on rat lung allograft rejection was evaluated. Left lung allotransplantation was performed from Brown-Norway to Fischer-F344 rats. Gene transfer into skeletal muscle was enhanced by electroporation. Three groups were studied: group I animals (n = 5) received 2.5 μg pCIK-hIL-10 (hIL-10/CMV [cytomegalovirus] early promoter enhancer) on day -1 and 80 μg pCIK-HGF (HGF/CMV early promoter enhancer) on day 5. Group II animals (n = 4) received 2.5 μg pCIK-hIL-10 and pUbC-hIL-10 (hIL-10/pUbC promoter) on day -1. Control group III animals (n = 4) were treated by sham electroporation on days -1 and 5. All animals received daily nontherapeutic intraperitoneal dose of cyclosporin A (2.5 mg/kg) and were sacrificed on day 15. Graft oxygenation and allograft rejection were evaluated. Significant differences were found between study groups in graft oxygenation (Pao(2)) (P = .0028; group I vs. groups II and III, P < .01 each). Pao(2) was low in group II (31 ± 1 mm Hg) and in group III controls (34 ± 10 mm Hg), without statistically significant difference between these 2 groups (P = .54). In contrast, in group I, Pao(2) of recipients sequentially transduced with IL-10 and HGF plasmids was much improved, with 112 ± 39 mm Hg (vs. groups II and III; P < .01 each), paralleled by reduced vascular and bronchial rejection (group I vs. groups II and III, P < .021 each). Sequential overexpression of anti-inflammatory cytokine IL-10, followed by sequential and overlapping HGF overexpression on day 5, preserves lung function and reduces acute lung allograft rejection up to day 15 post transplant as compared to prolonged IL-10 overexpression alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this study was to evaluate in vitro and in vivo the effects of up-regulation of the proangiogenic hypoxia inducible factor (HIF)-1α induced by dimethyloxalylglycine on endothelial cell cultures and on skin flap survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-)dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and synchronization and that these opposite correlations with different distributions undergo similar and significant neuronal developments with brain maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thienopyridines can cause neutropenia and agranulocytosis. The aim of the current investigations was to compare cytotoxicity of ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel for human neutrophil granulocytes with the toxicity for lymphocytes and to investigate underlying mechanisms. For granulocytes, clopidogrel, ticlopidine, clopidogrel carboxylate and prasugrel were concentration-dependently toxic starting at 10μM. Cytotoxicity could be prevented by the myeloperoxidase inhibitor rutin, but not by the cytochrome P450 inhibitor ketoconazole. All compounds were also toxic for lymphocytes, but cytotoxicity started at 100μM and could not be prevented by rutin or ketoconazole. Granulocytes metabolized ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel, and metabolization was inhibited by rutin, but not by ketoconazole. Metabolism of these compounds by lymphocytes was much slower and could not be inhibited by ketoconazole or rutin. In neutrophils, all compounds investigated decreased the electrical potential across the inner mitochondrial membrane, were associated with cellular accumulation of ROS, mitochondrial loss of cytochrome c and induction of apoptosis starting at 10μM. All of these effects could be inhibited by rutin, but not by ketoconazole. Similar findings were obtained in lymphocytes; but compared to neutrophils, the effects were detectable only at higher concentrations and were not inhibited by rutin. In conclusion, ticlopidine, clopidogrel, clopidogrel carboxylate and prasugrel are toxic for both granulocytes and lymphocytes. In granulocytes, cytotoxicity is more accentuated than in lymphocytes and depends on metabolization by myeloperoxidase. These findings suggest a mitochondrial mechanism for cytotoxicity for both myeloperoxidase-associated metabolites and, at higher concentrations, also for the parent compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the expression and presence of surfactant protein (SP) A and SP-D in the lacrimal apparatus, at the ocular surface, and in tears in healthy and pathologic states. METHODS: Expression of mRNA for SP-A and SP-D was analyzed by RT-PCR in healthy lacrimal gland, conjunctiva, cornea, and nasolacrimal ducts as well as in a spontaneously immortalized conjunctival epithelial cell line (HCjE; IOBA-NHC) and a SV40-transfected cornea epithelial cell line (HCE). Deposition of SP-A and SP-D was determined by Western blot, dot blot, and immunohistochemistry in healthy tissues, in tears, aqueous humor, and in sections of different corneal abnormalities (keratoconus, herpetic keratitis, and Staphylococcus aureus-based ulceration). Cell lines were stimulated with different cytokines and bacterial components and were analyzed for the production of SP-A and SP-D by immunohistochemistry. RESULTS: The presence of SP-A and SP-D on mRNA and protein levels was evidenced in healthy lacrimal gland, conjunctiva, cornea, and nasolacrimal duct samples. Moreover, both proteins were present in tears but were absent in aqueous humor. Immunohistochemistry revealed the production of both peptides by acinar epithelial cells of the lacrimal gland and epithelial cells of the conjunctiva and nasolacrimal ducts, whereas goblet cells revealed no reactivity. Healthy cornea revealed weak reactivity on epithelial surface cells only. In contrast, SP-A and SP-D revealed strong reactivity in patients with herpetic keratitis and corneal ulceration surrounding lesions and in several immigrated defense cells. Reactivity in corneal epithelium and endothelium was also seen in patients with keratoconus. Cell culture experiments revealed that SP-A and SP-D are produced by both epithelial cell lines without and after stimulation with cytokines and bacterial components. CONCLUSIONS: These results show that SP-A, in addition to SP-D, is a peptide of the tear film. Based on the known direct and indirect antimicrobial effects of collectins, the surfactant-associated proteins A and D seem to be involved in several ocular surface diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140). METHODS: To identify miRNA specifically expressed in chondrocytes, we performed gene expression profiling using miRNA microarrays and quantitative polymerase chain reaction with human articular chondrocytes compared with human mesenchymal stem cells (MSCs). The expression pattern of miR-140 was monitored during chondrogenic differentiation of human MSCs in pellet cultures and in human articular cartilage from normal and OA knee joints. We tested the effects of interleukin-1beta (IL-1beta) on miR-140 expression. Double-stranded miR-140 (ds-miR-140) was transfected into chondrocytes to analyze changes in the expression of genes associated with OA. RESULTS: Microarray analysis showed that miR-140 had the largest difference in expression between chondrocytes and MSCs. During chondrogenesis, miR-140 expression in MSC cultures increased in parallel with the expression of SOX9 and COL2A1. Normal human articular cartilage expressed miR-140, and this expression was significantly reduced in OA tissue. In vitro treatment of chondrocytes with IL-1beta suppressed miR-140 expression. Transfection of chondrocytes with ds-miR-140 down-regulated IL-1beta-induced ADAMTS5 expression and rescued the IL-1beta-dependent repression of AGGRECAN gene expression. CONCLUSION: This study shows that miR-140 has a chondrocyte differentiation-related expression pattern. The reduction in miR-140 expression in OA cartilage and in response to IL-1beta may contribute to the abnormal gene expression pattern characteristic of OA.