90 resultados para HIGH-AFFINITY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been difficult to replicate consistently the experimental model of axonal Guillain-Barré syndrome (GBS). We immunized rabbits with two lipo-oligosaccharides (LOS1 and LOS2) derived from the same C. jejuni strain and purified in a slightly different way. LOS1 did not contain proteins whereas several proteins were present in LOS2. In spite of a robust anti-GM1 antibody response in all animals the neuropathy developed only in rabbits immunized with LOS1. To explain this discrepancy we investigated fine specificity, affinity and ability to activate the complement of anti-GM1 antibodies. Only rabbits immunized with LOS1 showed monospecific high-affinity antibodies which activated more effectively the complement. Although it is not well understood how monospecific high-affinity antibodies are induced these are crucial for the induction of experimental axonal neuropathy. Only a strict adherence to the protocols demonstrated to be successful may guarantee the reproducibility and increase the confidence in the animal model as a reliable tool for the study of the human axonal GBS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A limited set of novel octreotide dicarba-analogues with non-native aromatic side chains in positions 7 and/or 10 were synthesized. Their affinity toward the ssts1-5 was determined. Derivative 4 exhibited a pan-somatostatin activity, except sst4, and derivative 8 exhibited high affinity and selectivity toward sst5. Actually, compound 8 has similar sst5 affinity (IC50 4.9 nM) to SRIF-28 and octreotide. Structure-activity relationships suggest that the Z geometry of the double-bond bridge is that preferred by the receptors. The NMR study on the conformations of these compounds in SDS(-d25) micelles solution shows that all these analogues have the pharmacophore beta-turn spanning Xaa7-D-Trp8-Lys9-Yaa10 residues. Notably, the correlation between conformation families and affinity data strongly indicates that the sst5 selectivity is favored by a helical conformation involving the C-terminus triad, while a pan-SRIF mimic activity is based mainly on a conformational equilibrium between extended and folded conformational states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligands of the benzodiazepine binding site of the GABA(A) receptor come in three flavors: positive allosteric modulators, negative allosteric modulators and antagonists all of which can bind with high affinity. The GABA(A) receptor is a pentameric protein which forms a chloride selective ion channel and ligands of the benzodiazepine binding site stabilize three different conformations of this protein. Classical benzodiazepines exert a positive allosteric effect by increasing the apparent affinity of channel opening by the agonist γ-aminobutyric acid (GABA). We concentrate here on the major adult isoform, the α(1)β(2)γ(2) GABA(A) receptor. The classical binding pocket for benzodiazepines is located in a subunit cleft between α(1) and γ(2) subunits in a position homologous to the agonist binding site for GABA that is located between β(2) and α(1) subunits. We review here approaches to this picture. In particular, point mutations were performed in combination with subsequent analysis of the expressed mutant proteins using either electrophysiological techniques or radioactive ligand binding assays. The predictive power of these methods is assessed by comparing the results with the predictions that can be made on the basis of the recently published crystal structure of the acetylcholine binding protein that shows homology to the N-terminal, extracellular domain of the GABA(A) receptor. In addition, we review an approach to the question of how the benzodiazepine ligands are positioned in their binding pocket. We also discuss a newly postulated modulatory site for benzodiazepines at the α(1)/β(2) subunit interface, homologous to the classical benzodiazepine binding pocket.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Treatment of many infectious diseases is under threat from drug resistance. Understanding the mechanisms of resistance is as high a priority as the development of new drugs. We have investigated the basis for cross-resistance between the diamidine and melaminophenyl arsenical classes of drugs in African trypanosomes. We induced high levels of pentamidine resistance in a line without the tbat1 gene that encodes the P2 transporter previously implicated in drug uptake. We isolated independent clones that displayed very considerable cross-resistance with melarsen oxide but not phenylarsine oxide and reduced uptake of [(3)H]pentamidine. In particular, the high-affinity pentamidine transport (HAPT1) activity was absent in the pentamidine-adapted lines, whereas the low affinity pentamidine transport (LAPT1) activity was unchanged. The parental tbat1(-/-) line was sensitive to lysis by melarsen oxide, and this process was inhibited by low concentrations of pentamidine, indicating the involvement of HAPT1. This pentamidine-inhibitable lysis was absent in the adapted line KO-B48. Likewise, uptake of the fluorescent diamidine 4',6-diamidino-2-phenylindole dihydrochloride was much delayed in live KO-B48 cells and insensitive to competition with up to 10 muM pentamidine. No overexpression of the Trypanosoma brucei brucei ATP-binding cassette transporter TbMRPA could be detected in KO-B48. We also show that a laboratory line of Trypanosoma brucei gambiense, adapted to high levels of resistance for the melaminophenyl arsenical drug melarsamine hydrochloride (Cymelarsan), had similarly lost TbAT1 and HAPT1 activity while retaining LAPT1 activity. It seems therefore that selection for resistance to either pentamidine or arsenical drugs can result in a similar phenotype of reduced drug accumulation, explaining the occurrence of cross-resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with cystic fibrosis (CF; N = 26) and with no prior history of infection with Pseudomonas aeruginosa were immunized with an octavalent O-polysaccharide-toxin A conjugate vaccine. During the next 4 years, 16 patients (61.5%) remained free of infection and 10 (38.5%) became infected. Total serum antilipopolysaccharide (LPS) antibody levels induced by immunization were comparable in infected and noninfected patients. In contrast, 12 of 16 noninfected versus 3 of 10 infected patients (p = 0.024) mounted and maintained a high-affinity anti-LPS antibody response. When compared retrospectively with the rate in a group of age- and gender-matched, nonimmunized, noncolonized patients with CF, the rate at which P. aeruginosa infections were acquired was significantly lower (p < or = 0.02) among all immunized versus nonimmunized patients during the first 2 years of observation. Subsequently, only those immunized patients who maintained a high-affinity anti-LPS antibody response had a significant reduction (p < or = 0.014) in the rate of infection during years 3 and 4. Smooth, typeable strains of P. aeruginosa predominated among immunized patients; rough, nontypeable strains were most frequently isolated from nonimmunized patients. Mucoid variants were isolated from one immunized patient versus six nonimmunized patients. These results indicate that the induction of a high-affinity P. aeruginosa anti-LPS antibody response can influence the rate of infection in patients with CF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate transporters play important roles in the termination of excitatory neurotransmission and in providing cells throughout the body with glutamate for metabolic purposes. The high-affinity glutamate transporters EAAC1 (SLC1A1), GLT1 (SLC1A2), GLAST (SLC1A3), EAAT4 (SLC1A6), and EAAT5 (SLC1A7) mediate the cellular uptake of glutamate by the co-transport of three sodium ions (Na(+)) and one proton (H(+)), with the counter-transport of one potassium ion (K(+)). Thereby, they protect the CNS from glutamate-induced neurotoxicity. Loss of function of glutamate transporters has been implicated in the pathogenesis of several diseases, including amyotrophic lateral sclerosis and Alzheimer's disease. In addition, glutamate transporters play a role in glutamate excitotoxicity following an ischemic stroke, due to reversed glutamate transport. Besides glutamate transporters, the SLC1 family encompasses two transporters of neutral amino acids, ASCT1 (SLC1A4) and ASCT2 (SLC1A5). Both transporters facilitate electroneutral exchange of amino acids in neurons and/or cells of the peripheral tissues. Some years ago, a high resolution structure of an archaeal homologue of the SLC1 family was determined, followed by the elucidation of its structure in the presence of the substrate aspartate and the inhibitor d,l-threo-benzyloxy aspartate (d,l-TBOA). Historically, the first few known inhibitors of SLC1 transporters were based on constrained glutamate analogs which were active in the high micromolar range but often also showed off-target activity at glutamate receptors. Further development led to the discovery of l-threo-β-hydroxyaspartate derivatives, some of which effectively inhibited SLC1 transporters at nanomolar concentrations. More recently, small molecule inhibitors have been identified whose structures are not based on amino acids. Activators of SLC1 family members have also been discovered but there are only a few examples known.