25 resultados para H2O
Resumo:
For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.
Resumo:
In this study, we present middle atmospheric water vapor (H2O) and ozone (O3) measurements obtained by ground-based microwave radiometers at three European locations in Bern (47° N), Onsala (57° N) and Sodankylä (67° N) during Northern winter 2009/2010. In January 2010, a major sudden stratospheric warming (SSW) occurred in the Northern Hemisphere whose signatures are evident in the ground-based observations of H2O and O3. The observed anomalies in H2O and O3 are mostly explained by the relative location of the polar vortex with respect to the measurement locations. The SSW started on 26 January 2010 and was most pronounced by the end of January. The zonal mean temperature in the middle stratosphere (10 hPa) increased by approximately 25 Kelvin within a few days. The stratospheric vortex weakened during the SSW and shifted towards Europe. In the mesosphere, the vortex broke down, which lead to large scale mixing of polar and midlatitudinal air. After the warming, the polar vortex in the stratosphere split into two weaker vortices and in the mesosphere, a new, pole-centered vortex formed with maximum wind speed of 70 m s−1 at approximately 40° N. The shift of the stratospheric vortex towards Europe was observed in Bern as an increase in stratospheric H2O and a decrease in O3. The breakdown of the mesospheric vortex during the SSW was observed at Onsala and Sodankylä as a sudden increase in mesospheric H2O. The following large-scale descent inside the newly formed mesospheric vortex was well captured by the H2O observations in Sodankylä. In order to combine the H2O observations from the three different locations, we applied the trajectory mapping technique on our H2O observations to derive synoptic scale maps of the H2O distribution. Based on our observations and the 3-D wind field, this method allows determining the approximate development of the stratospheric and mesospheric polar vortex and demonstrates the potential of a network of ground-based instruments.
Resumo:
The TROPOspheric Monitoring Instrument (TROPOMI) will be part of ESA's Sentinel-5 Precursor (S5P) satellite platform scheduled for launch in 2015. TROPOMI will monitor methane and carbon monoxide concentrations in the Earth's atmosphere by measuring spectra of back-scattered sunlight in the short-wave infrared (SWIR). S5P will be the first satellite mission to rely uniquely on the spectral window at 4190–4340 cm−1 (2.3 μm) to retrieve CH4 and CO. In this study, we investigated if the absorption features of the three relevant molecules CH4, CO, and H2O are adequately known. To this end, we retrieved total columns of CH4, CO, and H2O from absorption spectra measured by two ground-based Fourier transform spectrometers that are part of the Total Carbon Column Observing Network (TCCON). The retrieval results from the 4190–4340 cm−1 range at the TROPOMI resolution (0.45 cm−1) were then compared to the CH4 results obtained from the 6000 cm−1 region, and the CO results obtained from the 4190–4340 cm−1 region at the higher TCCON resolution (0.02 cm−1). For TROPOMI-like settings, we were able to reproduce the CH4 columns to an accuracy of 0.3% apart from a constant bias of 1%. The CO retrieval accuracy was, through interference, systematically influenced by the shortcomings of the CH4 and H2O spectroscopy. In contrast to CH4, the CO column error also varied significantly with atmospheric H2O content. Unaddressed, this would introduce seasonal and latitudinal biases to the CO columns retrieved from TROPOMI measurements. We therefore recommend further effort from the spectroscopic community to be directed at the H2O and CH4 spectroscopy in the 4190–4340 cm−1 region.
Resumo:
The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007) spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.
Resumo:
Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10c–30c, n = 21, corresponding to iterative dilutions of 100−10–100−30), sulfur (13x–30x, n = 18, 10−13–10−30), and copper sulfate (11c–30c, n = 20, 100−11–100−30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations thus may exhibit specific physicochemical properties that need to be determined in detail in future investigations.