20 resultados para Genome Scan
Resumo:
Recurrent airway obstruction (RAO), or heaves, is a naturally occurring asthma-like disease that is related to sensitisation and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. A genome-wide scanning approach using two half-sibling families was taken in order to locate the chromosome regions that contribute to the inherited component of this condition in these families. Initially, a panel of 250 microsatellite markers, which were chosen as a well-spaced, polymorphic selection covering the 31 equine autosomes, was used to genotype the two half-sibling families, which comprised in total 239 Warmblood horses. Subsequently, supplementary markers were added for a total of 315 genotyped markers. Each half-sibling family is focused around a severely RAO-affected stallion, and the phenotype of each individual was assessed for RAO and related signs, namely, breathing effort at rest, breathing effort at work, coughing, and nasal discharge, using an owner-based questionnaire. Analysis using a regression method for half-sibling family structures was performed using RAO and each of the composite clinical signs separately; two chromosome regions (on ECA13 and ECA15) showed a genome-wide significant association with RAO at P < 0.05. An additional 11 chromosome regions showed a more modest association. This is the first publication that describes the mapping of genetic loci involved in RAO. Several candidate genes are located in these regions, a number of which are interleukins. These are important signalling molecules that are intricately involved in the control of the immune response and are therefore good positional candidates.
Resumo:
Despite the evidence for a genetic predisposition to develop equine sarcoids (ES), no whole genome scan for ES has been performed to date. The objective of this explorative study was to identify chromosome regions associated with ES. The studied population was comprised of two half-sibling sire families, involving a total of 222 horses. Twenty-six of these horses were affected with ES. All horses had been previously genotyped with 315 microsatellite markers. Quantitative trait locus (QTL) signals were suggested where the F statistic exceeded chromosome-wide significance at P < 0.05. The QTL analyses revealed significant signals reaching P < 0.05 on equine chromosome (ECA) 20, 23 and 25, suggesting a polygenic character for this trait. The candidate regions identified on ECA 20, 23 and 25 include genes regulating virus replication and host immune response. Further investigation of the chromosome regions associated with ES and of genes potentially responsible for the development of ES could form the basis for early identification of susceptible animals, breeding selection or the development of new therapeutic targets.
Resumo:
We report the identification of quantitative trait loci (QTL) affecting carcass composition, carcass length, fat deposition and lean meat content using a genome scan across 462 animals from a combined intercross and backcross between Hampshire and Landrace pigs. Data were analysed using multiple linear regression fitting additive and dominance effects. This model was compared with a model including a parent-of-origin effect to spot evidence of imprinting. Several precisely defined muscle phenotypes were measured in order to dissect body composition in more detail. Three significant QTL were detected in the study at the 1% genome-wide level, and twelve significant QTL were detected at the 5% genome-wide level. These QTL comprise loci affecting fat deposition and lean meat content on SSC1, 4, 9, 10, 13 and 16, a locus on SSC2 affecting the ratio between weight of meat and bone in back and weight of meat and bone in ham and two loci affecting carcass length on SSC12 and 17. The well-defined phenotypes in this study enabled us to detect QTL for sizes of individual muscles and to obtain information of relevance for the description of the complexity underlying other carcass traits.
Resumo:
A genome-wide scan was performed to detect quantitative trait loci (QTLs) for osteochondrosis (OC) and osteochondrosis dissecans (OCD) in horses. The marker set comprised 260 microsatellites. We collected data from 211 Hanoverian warmblood horses consisting of 14 paternal half-sib families. Traits used were OC (fetlock and/or hock joints affected), OCD (fetlock and/or hock joints affected), fetlock OC, fetlock OCD, hock OC, and hock OCD. The first genome scan included 172 microsatellite markers. In a second step 88 additional markers were chosen to refine putative QTLs found in the first scan. Genome-wide significant QTLs were located on equine chromosomes 2, 4, 5, and 16. QTLs for fetlock OC and hock OC partly overlapped on the same chromosomes, indicating that these traits may be genetically related. QTLs reached the chromosome-wide significance level on eight different equine chromosomes: 2, 3, 4, 5, 15, 16, 19, and 21. This whole-genome scan was a first step toward the identification of candidate genome regions harboring genes responsible for equine OC. Further investigations are necessary to refine the map positions of the QTLs already identified for OC.
Resumo:
Adaptive radiation is usually thought to be associated with speciation, but the evolution of intraspecific polymorphisms without speciation is also possible. The radiation of cichlid fish in Lake Victoria (LV) is perhaps the most impressive example of a recent rapid adaptive radiation, with 600+ very young species. Key questions about its origin remain poorly characterized, such as the importance of speciation versus polymorphism, whether species persist on evolutionary time scales, and if speciation happens more commonly in small isolated or in large connected populations. We used 320 individuals from 105 putative species from Lakes Victoria, Edward, Kivu, Albert, Nabugabo and Saka, in a radiation-wide amplified fragment length polymorphism (AFLP) genome scan to address some of these questions. We demonstrate pervasive signatures of speciation supporting the classical model of adaptive radiation associated with speciation. A positive relationship between the age of lakes and the average genomic differentiation of their species, and a significant fraction of molecular variance explained by above-species level taxonomy suggest the persistence of species on evolutionary time scales, with radiation through sequential speciation rather than a single starburst. Finally the large gene diversity retained from colonization to individual species in every radiation suggests large effective population sizes and makes speciation in small geographical isolates unlikely.
Resumo:
Equine recurrent airway obstruction (RAO) is a chronic lower airway disease of the horse caused by hypersensitivity reactions to inhaled stable dust, including mould spores such as Aspergillus fumigatus. The goals of this study were to investigate whether total serum IgE levels and allergen-specific IgE and IgG subclasses are influenced by genetic factors and/or RAO and whether quantitative trait loci (QTL) could be identified for these parameters. The offspring of two RAO-affected sires (S1: n=56 and S2: n=65) were grouped by stallion and disease status, and total serum IgE levels and specific IgE, IgGa, IgGb and IgG(T) levels against recombinant Aspergillus fumigatus 7 (rAspf7) were measured by ELISA. A panel of 315 microsatellite markers covering the 31 equine autosomes were used to genotype the stallions and their offspring. A whole-genome scan using half-sib regression interval mapping was performed for each of the IgG and IgE subclasses. There was no significant effect of disease status or sire on total IgE levels, but there was a significant effect of gender and age. rAspf7-specific IgGa levels were significantly higher in RAO-affected than in healthy horses. The offspring of S1 had significantly higher rAspf7-specific IgGa and IgE levels than those of S2. Five QTLs were significant chromosome-wide (P<0.01). QTLs for rAspf7-specific IgGa and IgE were identified on ECA 1, for rAspf7-specific IgGa and IgGb on ECA 24 and for rAspf7 IgGa on ECA 26. These results provide evidence for effects of disease status and genetics on allergen-specific IgGa and IgE.
Resumo:
The aim of this study was to identify quantitative trait loci (QTL) for osteochondrosis (OC) and palmar/plantar osseous fragments (POF) in fetlock joints in a whole-genome scan of 219 South German Coldblood horses. Symptoms of OC and POF were checked by radiography in 117 South German Coldblood horses at a mean age of 17 months. The radiographic examination comprised the fetlock and hock joints of all limbs. The genome scan included 157 polymorphic microsatellite markers. All microsatellite markers were equally spaced over the 31 autosomes and the X chromosome, with an average distance of 17.7 cM and a mean polymorphism information content (PIC) of 63%. Sixteen chromosomes harbouring putative QTL regions were further investigated by genotyping the animals with 93 additional markers. QTL that had chromosome-wide significance by non-parametric Z-means and LOD scores were found on 10 chromosomes. This included seven QTL for fetlock OC and one QTL on ECA18 associated with hock OC and fetlock OC. Significant QTL for POF in fetlock joints were located on equine chromosomes 1, 4, 8, 12 and 18. This genome scan is an important step towards the identification of genes responsible for OC in horses.
Resumo:
Bovine dilated cardiomyopathy (BDCMP) is a severe and terminal disease of the heart muscle observed in Holstein-Friesian cattle over the last 30 years. There is strong evidence for an autosomal recessive mode of inheritance for BDCMP. The objective of this study was to genetically map BDCMP, with the ultimate goal of identifying the causative mutation. A whole-genome scan using 199 microsatellite markers and one SNP revealed an assignment of BDCMP to BTA18. Fine-mapping on BTA18 refined the candidate region to the MSBDCMP06-BMS2785 interval. The interval containing the BDCMP locus was confirmed by multipoint linkage analysis using the software loki. The interval is about 6.7 Mb on the bovine genome sequence (Btau 3.1). The corresponding region of HSA19 is very gene-rich and contains roughly 200 genes. Although telomeric of the marker interval, TNNI3 is a possible positional and a functional candidate for BDCMP given its involvement in a human form of dilated cardiomyopathy. Sequence analysis of TNNI3 in cattle revealed no mutation in the coding sequence, but there was a G-to-A transition in intron 6 (AJ842179:c.378+315G>A). The analysis of this SNP using the study's BDCMP pedigree did not conclusively exclude TNNI3 as a candidate gene for BDCMP. Considering the high density of genes on the homologous region of HSA19, further refinement of the interval on BTA18 containing the BDCMP locus is needed.
Resumo:
Arabidopsis thaliana has emerged as a leading model species in plant genetics and functional genomics including research on the genetic causes of heterosis. We applied a triple testcross (TTC) design and a novel biometrical approach to identify and characterize quantitative trait loci (QTL) for heterosis of five biomass-related traits by (i) estimating the number, genomic positions, and genetic effects of heterotic QTL, (ii) characterizing their mode of gene action, and (iii) testing for presence of epistatic effects by a genomewide scan and marker x marker interactions. In total, 234 recombinant inbred lines (RILs) of Arabidopsis hybrid C24 x Col-0 were crossed to both parental lines and their F1 and analyzed with 110 single-nucleotide polymorphism (SNP) markers. QTL analyses were conducted using linear transformations Z1, Z2, and Z3 calculated from the adjusted entry means of TTC progenies. With Z1, we detected 12 QTL displaying augmented additive effects. With Z2, we mapped six QTL for augmented dominance effects. A one-dimensional genome scan with Z3 revealed two genomic regions with significantly negative dominance x additive epistatic effects. Two-way analyses of variance between marker pairs revealed nine digenic epistatic interactions: six reflecting dominance x dominance effects with variable sign and three reflecting additive x additive effects with positive sign. We conclude that heterosis for biomass-related traits in Arabidopsis has a polygenic basis with overdominance and/or epistasis being presumably the main types of gene action.
Resumo:
Arachnomelia in Brown Swiss cattle is a monogenic autosomal recessive inherited congenital disorder of the skeletal system giving affected calves a spidery look (OMIA ID 000059). Over a period of 20 years 15 cases were sampled in the Swiss and Italian Brown cattle population. Pedigree data revealed that all affected individuals trace back to a single acknowledged carrier founder sire. A genome scan using 240 microsatellites spanning the 29 bovine autosomes showed homozygosity at three adjacent microsatellite markers on bovine Chr 5 in all cases. Linkage analysis confirmed the localization of the arachnomelia mutation in the region of the marker ETH10. Fine-mapping and haplotype analysis using a total of 34 markers in this region refined the critical region of the arachnomelia locus to a 7.19-Mb interval on bovine Chr 5. The disease-associated IBD haplotype was shared by 36 proven carrier animals and allows marker-assisted selection. As the corresponding human and mouse chromosome segments do not contain any clear functional candidate genes for this disorder, the mutation causing arachnomelia in the Brown Swiss cattle might help to identify an unknown gene in bone development.
Resumo:
The white belt pattern of Brown Swiss cattle is characterized by a lack of melanocytes in a stretch of skin around the midsection. This pattern is of variable width and sometimes the belt does not fully circle the body. To identify the gene responsible for this colour variation, we performed linkage mapping of the belted locus using six segregating half-sib families including 104 informative meioses for the belted character. The pedigree confirmed a monogenic autosomal dominant inheritance of the belted phenotype in Brown Swiss cattle. We performed a genome scan using 186 microsatellite markers in a subset of 88 animals of the six families. Linkage with the belt phenotype was detected at the telomeric region of BTA3. Fine-mapping and haplotype analysis using 19 additional markers in this region refined the critical region of the belted locus to a 922-kb interval on BTA3. As the corresponding human and mouse chromosome segments contain no obvious candidate gene for this coat colour trait, the mutation causing the belt pattern in the Brown Swiss cattle might help to identify an unknown gene influencing skin pigmentation.
Resumo:
In eukaryotes, small RNAs (sRNAs) have key roles in development, gene expression regulation, and genome integrity maintenance. In ciliates, such as Paramecium, sRNAs form the heart of an epigenetic system that has evolved from core eukaryotic gene silencing components to selectively target DNA for deletion. In Paramecium, somatic genome development from the germline genome accurately eliminates the bulk of typically gene-interrupting, noncoding DNA. We have discovered an sRNA class (internal eliminated sequence [IES] sRNAs [iesRNAs]), arising later during Paramecium development, which originates from and precisely delineates germline DNA (IESs) and complements the initial sRNAs ("scan" RNAs [scnRNAs]) in targeting DNA for elimination. We show that whole-genome duplications have facilitated successive differentiations of Paramecium Dicer-like proteins, leading to cooperation between Dcl2 and Dcl3 to produce scnRNAs and to the production of iesRNAs by Dcl5. These innovations highlight the ability of sRNA systems to acquire capabilities, including those in genome development and integrity.
Resumo:
Robust and accurate identification of intervertebral discs from low resolution, sparse MRI scans is essential for the automated scan planning of the MRI spine scan. This paper presents a graphical model based solution for the detection of both the positions and orientations of intervertebral discs from low resolution, sparse MRI scans. Compared with the existing graphical model based methods, the proposed method does not need a training process using training data and it also has the capability to automatically determine the number of vertebrae visible in the image. Experiments on 25 low resolution, sparse spine MRI data sets verified its performance.
Resumo:
Marginal zone B-cell lymphomas (MZLs) have been divided into 3 distinct subtypes (extranodal MZLs of mucosa-associated lymphoid tissue [MALT] type, nodal MZLs, and splenic MZLs). Nevertheless, the relationship between the subtypes is still unclear. We performed a comprehensive analysis of genomic DNA copy number changes in a very large series of MZL cases with the aim of addressing this question. Samples from 218 MZL patients (25 nodal, 57 MALT, 134 splenic, and 2 not better specified MZLs) were analyzed with the Affymetrix Human Mapping 250K SNP arrays, and the data combined with matched gene expression in 33 of 218 cases. MALT lymphoma presented significantly more frequently gains at 3p, 6p, 18p, and del(6q23) (TNFAIP3/A20), whereas splenic MZLs was associated with del(7q31), del(8p). Nodal MZLs did not show statistically significant differences compared with MALT lymphoma while lacking the splenic MZLs-related 7q losses. Gains of 3q and 18q were common to all 3 subtypes. del(8p) was often present together with del(17p) (TP53). Although del(17p) did not determine a worse outcome and del(8p) was only of borderline significance, the presence of both deletions had a highly significant negative impact on the outcome of splenic MZLs.
Resumo:
We undertook a meta-analysis of six Crohn's disease genome-wide association studies (GWAS) comprising 6,333 affected individuals (cases) and 15,056 controls and followed up the top association signals in 15,694 cases, 14,026 controls and 414 parent-offspring trios. We identified 30 new susceptibility loci meeting genome-wide significance (P < 5 × 10 ? ? ). A series of in silico analyses highlighted particular genes within these loci and, together with manual curation, implicated functionally interesting candidate genes including SMAD3, ERAP2, IL10, IL2RA, TYK2, FUT2, DNMT3A, DENND1B, BACH2 and TAGAP. Combined with previously confirmed loci, these results identify 71 distinct loci with genome-wide significant evidence for association with Crohn's disease.