19 resultados para Galaxies : Photometry


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission (expected to launch in 2017) dedicated to search for exoplanet transits by means of ultra-high precision photometry. CHEOPS will provide accurate radii for planets down to Earth size. Targets will mainly come from radial velocity surveys. The CHEOPS instrument is an optical space telescope of 30 cm clear aperture with a single focal plane CCD detector. The tube assembly is passively cooled and thermally controlled to support high precision, low noise photometry. The telescope feeds a re-imaging optic, which supports the straylight suppression concept to achieve the required Signal to Noise. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To compare the effect of intravitreal and orbital floor triamcinolone acetonide (TA) on macular edema, visual outcome, and course of postoperative inflammation after cataract surgery in uveitis patients. DESIGN: Prospective, randomized clinical trial. METHODS: Monocenter study (40 patients) with chronic endogenous uveitis who underwent phacoemulsification with intraocular lens implantation with either 4 mg intravitreal TA (n = 20) or 40 mg orbital floor TA (n = 20). The primary outcome was influence on cystoid macular edema (CME). Secondary outcome measures were best-corrected visual acuity (BCVA), anterior chamber cell grade, laser flare photometry, giant cell deposition, posterior capsule opacification (PCO), and intraocular pressure. RESULTS: Mean central foveal thickness decreased in the intravitreal TA group and increased in the orbital floor TA group (P < .001 at one and three months). CME improved in 50% of patients after intravitreal TA, whereas it was unchanged after orbital floor TA (difference between the groups at three months, P = .049). Mean BCVA (logarithm of the minimal angle of resolution) improved postoperatively (P < .001) from 0.76 and 0.74 to 0.22 and 0.23 in the intravitreal TA and orbital floor TA group, respectively. Anterior chamber cell count at one month was lower in the intravitreal TA than in the orbital floor TA group (P = .02). Laser flare photometry values and giant cell numbers were slightly higher after orbital floor TA than after intravitreal TA. The groups did not differ with respect to PCO rate and ocular hypertension. CONCLUSIONS: The CME improvement and anti-inflammatory effect after intravitreal TA was better than after orbital floor TA injection in cataract surgery in uveitis patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have measured the bidirectional reflectance of analogs of dry, wet, and frozen Martian soils over a wide range of phase angles in the visible spectral range. All samples were produced from two geologic samples: the standard JSC Mars-1 soil simulant and Hawaiian basaltic sand. In a first step, experiments were conducted with the dry samples to investigate the effects of surface texture. Comparisons with results independently obtained by different teams with similar samples showed a satisfying reproducibility of the photometric measurements as well as a noticeable influence of surface textures resulting from different sample preparation procedures. In a second step, water was introduced to produce wet and frozen samples and their photometry investigated. Optical microscope images of the samples provided information about their microtexture. Liquid water, even in relatively low amount, resulted in the disappearance of the backscattering peak and the appearance of a forward-scattering peak whose intensity increases with the amount of water. Specular reflections only appeared when water was present in an amount large enough to allow water to form a film at the surface of the sample. Icy samples showed a wide variability of photometric properties depending on the physical properties of the water ice. We discuss the implications of these measurements in terms of the expected photometric behavior of the Martian surface, from equatorial to circum-polar regions. In particular, we propose some simple photometric criteria to improve the identification of wet and/or icy soils from multiple observations under different geometries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Directly imaged exoplanets are unexplored laboratories for the application of the spectral and temperature retrieval method, where the chemistry and composition of their atmospheres are inferred from inverse modeling of the available data. As a pilot study, we focus on the extrasolar gas giant HR 8799b, for which more than 50 data points are available. We upgrade our non-linear optimal estimation retrieval method to include a phenomenological model of clouds that requires the cloud optical depth and monodisperse particle size to be specified. Previous studies have focused on forward models with assumed values of the exoplanetary properties; there is no consensus on the best-fit values of the radius, mass, surface gravity, and effective temperature of HR 8799b. We show that cloud-free models produce reasonable fits to the data if the atmosphere is of super-solar metallicity and non-solar elemental abundances. Intermediate cloudy models with moderate values of the cloud optical depth and micron-sized particles provide an equally reasonable fit to the data and require a lower mean molecular weight. We report our best-fit values for the radius, mass, surface gravity, and effective temperature of HR 8799b. The mean molecular weight is about 3.8, while the carbon-to-oxygen ratio is about unity due to the prevalence of carbon monoxide. Our study emphasizes the need for robust claims about the nature of an exoplanetary atmosphere to be based on analyses involving both photometry and spectroscopy and inferred from beyond a few photometric data points, such as are typically reported for hot Jupiters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N. Bostrom’s simulation argument and two additional assumptions imply that we are likely to live in a computer simulation. The argument is based upon the following assumption about the workings of realistic brain simulations: The hardware of a computer on which a brain simulation is run bears a close analogy to the brain itself. To inquire whether this is so, I analyze how computer simulations trace processes in their targets. I describe simulations as fictional, mathematical, pictorial, and material models. Even though the computer hardware does provide a material model of the target, this does not suffice to underwrite the simulation argument because the ways in which parts of the computer hardware interact during simulations do not resemble the ways in which neurons interact in the brain. Further, there are computer simulations of all kinds of systems, and it would be unreasonable to infer that some computers display consciousness just because they simulate brains rather than, say, galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims. 67P/Churyumov-Gerasimenko is the target comet of the ESA’s Rosetta mission. After commissioning at the end of March 2014, the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) onboard Rosetta, started imaging the comet and its dust environment to investigate how they change and evolve while approaching the Sun. Methods. We focused our work on Narrow Angle Camera (NAC) orange images and Wide Angle Camera (WAC) red and visible-610 images acquired between 2014 March 23 and June 24 when the nucleus of 67P was unresolved and moving from approximately 4.3 AU to 3.8 AU inbound. During this period the 67P – Rosetta distance decreased from 5 million to 120 thousand km. Results. Through aperture photometry, we investigated how the comet brightness varies with heliocentric distance. 67P was likely already weakly active at the end of March 2014, with excess flux above that expected for the nucleus. The comet’s brightness was mostly constant during the three months of approach observations, apart from one outburst that occurred around April 30 and a second increase in flux after June 20. Coma was resolved in the profiles from mid-April. Analysis of the coma morphology suggests that most of the activity comes from a source towards the celestial north pole of the comet, but the outburst that occurred on April 30 released material in a different direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stray light contamination reduces considerably the precision of photometric of faint stars for low altitude spaceborne observatories. When measuring faint objects, the necessity of coping with stray light contamination arises in order to avoid systematic impacts on low signal-to-noise images. Stray light contamination can be represented by a flat offset in CCD data. Mitigation techniques begin by a comprehensive study during the design phase, followed by the use of target pointing optimisation and post-processing methods. We present a code that aims at simulating the stray-light contamination in low-Earth orbit coming from reflexion of solar light by the Earth. StrAy Light SimulAtor (SALSA) is a tool intended to be used at an early stage as a tool to evaluate the effective visible region in the sky and, therefore to optimise the observation sequence. SALSA can compute Earth stray light contamination for significant periods of time allowing missionwide parameters to be optimised (e.g. impose constraints on the point source transmission function (PST) and/or on the altitude of the satellite). It can also be used to study the behaviour of the stray light at different seasons or latitudes. Given the position of the satellite with respect to the Earth and the Sun, SALSA computes the stray light at the entrance of the telescope following a geometrical technique. After characterising the illuminated region of the Earth, the portion of illuminated Earth that affects the satellite is calculated. Then, the flux of reflected solar photons is evaluated at the entrance of the telescope. Using the PST of the instrument, the final stray light contamination at the detector is calculated. The analysis tools include time series analysis of the contamination, evaluation of the sky coverage and an objects visibility predictor. Effects of the South Atlantic Anomaly and of any shutdown periods of the instrument can be added. Several designs or mission concepts can be easily tested and compared. The code is not thought as a stand-alone mission designer. Its mandatory inputs are a time series describing the trajectory of the satellite and the characteristics of the instrument. This software suite has been applied to the design and analysis of CHEOPS (CHaracterizing ExOPlanet Satellite). This mission requires very high precision photometry to detect very shallow transits of exoplanets. Different altitudes and characteristics of the detector have been studied in order to find the best parameters, that reduce the effect of contamination. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CHaracterizing ExOPlanet Satellite (CHEOPS) is an ESA Small Mission whose launch is planned for the end of 2017. It is a Ritchey-Chretien telescope with a 320 mm aperture providing a FoV of 0.32 degrees, which will target nearby bright stars already known to host planets, and measure, through ultrahigh precision photometry, the radius of exo-planets, allowing to determine their composition. This paper will present the details of the AIV plan for a demonstration model of the CHEOPS Telescope with equivalent structure but different CTEs. Alignment procedures, needed GSEs and devised verification tests will be described and a path for the AIV of the flight model, which will take place at industries premises, will be sketched. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).