103 resultados para GPS positioning
Resumo:
Clock synchronization is critical for the operation of a distributed wireless network system. In this paper we investigate on a method able to evaluate in real time the synchronization offset between devices down to nanoseconds (as needed for positioning). The method is inspired by signal processing algorithms and relies on fine-grain time information obtained during the reconstruction of the signal at the receiver. Applying the method to a GPS-synchronized system show that GPS-based synchronization has high accuracy potential but still suffers from short-term clock drift, which limits the achievable localization error.
Resumo:
The accuracy of Global Positioning System (GPS) time series is degraded by the presence of offsets. To assess the effectiveness of methods that detect and remove these offsets, we designed and managed the Detection of Offsets in GPS Experiment. We simulated time series that mimicked realistic GPS data consisting of a velocity component, offsets, white and flicker noises (1/f spectrum noises) composed in an additive model. The data set was made available to the GPS analysis community without revealing the offsets, and several groups conducted blind tests with a range of detection approaches. The results show that, at present, manual methods (where offsets are hand picked) almost always give better results than automated or semi‒automated methods (two automated methods give quite similar velocity bias as the best manual solutions). For instance, the fifth percentile range (5% to 95%) in velocity bias for automated approaches is equal to 4.2 mm/year (most commonly ±0.4 mm/yr from the truth), whereas it is equal to 1.8 mm/yr for the manual solutions (most commonly 0.2 mm/yr from the truth). The magnitude of offsets detectable by manual solutions is smaller than for automated solutions, with the smallest detectable offset for the best manual and automatic solutions equal to 5 mm and 8 mm, respectively. Assuming the simulated time series noise levels are representative of real GPS time series, robust geophysical interpretation of individual site velocities lower than 0.2–0.4 mm/yr is therefore certainly not robust, although a limit of nearer 1 mm/yr would be a more conservative choice. Further work to improve offset detection in GPS coordinates time series is required before we can routinely interpret sub‒mm/yr velocities for single GPS stations.
Resumo:
An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning Sys- tem (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Insti- tute of the University of Bern (AIUB) LEO precise or- bit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numeri- cal integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to effi- ciently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circula- tion Explorer (GOCE).
Resumo:
The International GNSS Service (IGS) provides operational products for the GPS and GLONASS constellation. Homogeneously processed time series of parameters from the IGS are only available for GPS. Reprocessed GLONASS series are provided only by individual Analysis Centers (i. e. CODE and ESA), making it difficult to fully include the GLONASS system into a rigorous GNSS analysis. In view of the increasing number of active GLONASS satellites and a steadily growing number of GPS+GLONASS-tracking stations available over the past few years, Technische Universität Dresden, Technische Universität München, Universität Bern and Eidgenössische Technische Hochschule Zürich performed a combined reprocessing of GPS and GLONASS observations. Also, SLR observations to GPS and GLONASS are included in this reprocessing effort. Here, we show only SLR results from a GNSS orbit validation. In total, 18 years of data (1994–2011) have been processed from altogether 340 GNSS and 70 SLR stations. The use of GLONASS observations in addition to GPS has no impact on the estimated linear terrestrial reference frame parameters. However, daily station positions show an RMS reduction of 0.3 mm on average for the height component when additional GLONASS observations can be used for the time series determination. Analyzing satellite orbit overlaps, the rigorous combination of GPS and GLONASS neither improves nor degrades the GPS orbit precision. For GLONASS, however, the quality of the microwave-derived GLONASS orbits improves due to the combination. These findings are confirmed using independent SLR observations for a GNSS orbit validation. In comparison to previous studies, mean SLR biases for satellites GPS-35 and GPS-36 could be reduced in magnitude from −35 and −38 mm to −12 and −13 mm, respectively. Our results show that remaining SLR biases depend on the satellite type and the use of coated or uncoated retro-reflectors. For Earth rotation parameters, the increasing number of GLONASS satellites and tracking stations over the past few years leads to differences between GPS-only and GPS+GLONASS combined solutions which are most pronounced in the pole rate estimates with maximum 0.2 mas/day in magnitude. At the same time, the difference between GLONASS-only and combined solutions decreases. Derived GNSS orbits are used to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper. Phase observation residuals from a precise point positioning are at the level of 2 mm and particularly reveal poorly modeled yaw maneuver periods.
Resumo:
Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Our method to evaluate the synchronization accuracy is inspired by signal processing algorithms and relies on fine grain time information. The method is able to calculate the clock offset and skew between devices with nanosecond accuracy in real time. It was implemented using software defined radio technology. We demonstrate that GPS-based synchronization suffers from remaining clock offset in the range of a few hundred of nanoseconds but the clock skew is negligible. Finally, we determine a corresponding lower bound on the expected positioning error.
Resumo:
In Arabidopsis (Arabidopsis thaliana), the blue light photoreceptor phototropins (phot1 and phot2) fine-tune the photosynthetic status of the plant by controlling several important adaptive processes in response to environmental light variations. These processes include stem and petiole phototropism (leaf positioning), leaf flattening, stomatal opening, and chloroplast movements. The PHYTOCHROME KINASE SUBSTRATE (PKS) protein family comprises four members in Arabidopsis (PKS1-PKS4). PKS1 is a novel phot1 signaling element during phototropism, as it interacts with phot1 and the important signaling element NONPHOTOTROPIC HYPOCOTYL3 (NPH3) and is required for normal phot1-mediated phototropism. In this study, we have analyzed more globally the role of three PKS members (PKS1, PKS2, and PKS4). Systematic analysis of mutants reveals that PKS2 (and to a lesser extent PKS1) act in the same subset of phototropin-controlled responses as NPH3, namely leaf flattening and positioning. PKS1, PKS2, and NPH3 coimmunoprecipitate with both phot1-green fluorescent protein and phot2-green fluorescent protein in leaf extracts. Genetic experiments position PKS2 within phot1 and phot2 pathways controlling leaf positioning and leaf flattening, respectively. NPH3 can act in both phot1 and phot2 pathways, and synergistic interactions observed between pks2 and nph3 mutants suggest complementary roles of PKS2 and NPH3 during phototropin signaling. Finally, several observations further suggest that PKS2 may regulate leaf flattening and positioning by controlling auxin homeostasis. Together with previous findings, our results indicate that the PKS proteins represent an important family of phototropin signaling proteins.
Resumo:
Although surgical navigation reduces the rate of malpositioned acetabular cups in total hip arthroplasty (THA), its use has not been widely adopted. As a result of our perceived need for simple and efficient methods of navigation, we developed a mechanical navigation device for acetabular cup orientation.
Resumo:
In this study we sought to evaluate the reproducibility of sensory nerve conduction studies (NCS) using ultrasound-guided needle positioning (USNP).