56 resultados para Femur - Cirurgia
Resumo:
Osteoarticular allograft is one possible treatment in wide surgical resections with large defects. Performing best osteoarticular allograft selection is of great relevance for optimal exploitation of the bone databank, good surgery outcome and patient’s recovery. Current approaches are, however, very time consuming hindering these points in practice. We present a validation study of a software able to perform automatic bone measurements used to automatically assess the distal femur sizes across a databank. 170 distal femur surfaces were reconstructed from CT data and measured manually using a size measure protocol taking into account the transepicondyler distance (A), anterior-posterior distance in medial condyle (B) and anterior-posterior distance in lateral condyle (C). Intra- and inter-observer studies were conducted and regarded as ground truth measurements. Manual and automatic measures were compared. For the automatic measurements, the correlation coefficients between observer one and automatic method, were of 0.99 for A measure and 0.96 for B and C measures. The average time needed to perform the measurements was of 16 h for both manual measurements, and of 3 min for the automatic method. Results demonstrate the high reliability and, most importantly, high repeatability of the proposed approach, and considerable speed-up on the planning.
Resumo:
Seventeen bones (sixteen cadaveric bones and one plastic bone) were used to validate a method for reconstructing a surface model of the proximal femur from 2D X-ray radiographs and a statistical shape model that was constructed from thirty training surface models. Unlike previously introduced validation studies, where surface-based distance errors were used to evaluate the reconstruction accuracy, here we propose to use errors measured based on clinically relevant morphometric parameters. For this purpose, a program was developed to robustly extract those morphometric parameters from the thirty training surface models (training population), from the seventeen surface models reconstructed from X-ray radiographs, and from the seventeen ground truth surface models obtained either by a CT-scan reconstruction method or by a laser-scan reconstruction method. A statistical analysis was then performed to classify the seventeen test bones into two categories: normal cases and outliers. This classification step depends on the measured parameters of the particular test bone. In case all parameters of a test bone were covered by the training population's parameter ranges, this bone is classified as normal bone, otherwise as outlier bone. Our experimental results showed that statistically there was no significant difference between the morphometric parameters extracted from the reconstructed surface models of the normal cases and those extracted from the reconstructed surface models of the outliers. Therefore, our statistical shape model based reconstruction technique can be used to reconstruct not only the surface model of a normal bone but also that of an outlier bone.
Resumo:
Statistical models have been recently introduced in computational orthopaedics to investigate the bone mechanical properties across several populations. A fundamental aspect for the construction of statistical models concerns the establishment of accurate anatomical correspondences among the objects of the training dataset. Various methods have been proposed to solve this problem such as mesh morphing or image registration algorithms. The objective of this study is to compare a mesh-based and an image-based statistical appearance model approaches for the creation of nite element(FE) meshes. A computer tomography (CT) dataset of 157 human left femurs was used for the comparison. For each approach, 30 finite element meshes were generated with the models. The quality of the obtained FE meshes was evaluated in terms of volume, size and shape of the elements. Results showed that the quality of the meshes obtained with the image-based approach was higher than the quality of the mesh-based approach. Future studies are required to evaluate the impact of this finding on the final mechanical simulations.
Resumo:
Osteoarticular allograft transplantation is a popular treatment method in wide surgical resections with large defects. For this reason hospitals are building bone data banks. Performing the optimal allograft selection on bone banks is crucial to the surgical outcome and patient recovery. However, current approaches are very time consuming hindering an efficient selection. We present an automatic method based on registration of femur bones to overcome this limitation. We introduce a new regularization term for the log-domain demons algorithm. This term replaces the standard Gaussian smoothing with a femur specific polyaffine model. The polyaffine femur model is constructed with two affine (femoral head and condyles) and one rigid (shaft) transformation. Our main contribution in this paper is to show that the demons algorithm can be improved in specific cases with an appropriate model. We are not trying to find the most optimal polyaffine model of the femur, but the simplest model with a minimal number of parameters. There is no need to optimize for different number of regions, boundaries and choice of weights, since this fine tuning will be done automatically by a final demons relaxation step with Gaussian smoothing. The newly developed synthesis approach provides a clear anatomically motivated modeling contribution through the specific three component transformation model, and clearly shows a performance improvement (in terms of anatomical meaningful correspondences) on 146 CT images of femurs compared to a standard multiresolution demons. In addition, this simple model improves the robustness of the demons while preserving its accuracy. The ground truth are manual measurements performed by medical experts.
Resumo:
This paper presents a new approach for reconstructing a patient-specific shape model and internal relative intensity distribution of the proximal femur from a limited number (e.g., 2) of calibrated C-arm images or X-ray radiographs. Our approach uses independent shape and appearance models that are learned from a set of training data to encode the a priori information about the proximal femur. An intensity-based non-rigid 2D-3D registration algorithm is then proposed to deformably fit the learned models to the input images. The fitting is conducted iteratively by minimizing the dissimilarity between the input images and the associated digitally reconstructed radiographs of the learned models together with regularization terms encoding the strain energy of the forward deformation and the smoothness of the inverse deformation. Comprehensive experiments conducted on images of cadaveric femurs and on clinical datasets demonstrate the efficacy of the present approach.
Resumo:
The prevalence of a cam-type deformity in athletes and its association with vigorous sports activities during and after the growth period is unknown.
What's your diagnosis? Severe Osteochondrosis Lesion of the Medial Femur Condyle in a Warmblood Foal