95 resultados para FACTOR PATHWAY INHIBITOR
Resumo:
Coagulation factor XII (FXII) inhibitors are of interest for the study of the protease in the intrinsic coagulation pathway, for the suppression of contact activation in blood coagulation assays, and they have potential application in antithrombotic therapy. However, synthetic FXII inhibitors developed to date have weak binding affinity and/or poor selectivity. Herein, we developed a peptide macrocycle that inhibits activated FXII (FXIIa) with an inhibitory constant Ki of 22 nM and a selectivity of >2000-fold over other proteases. Sequence and structure analysis revealed that one of the two macrocyclic rings of the in vitro evolved peptide mimics the combining loop of corn trypsin inhibitor, a natural protein-based inhibitor of FXIIa. The synthetic inhibitor blocked intrinsic coagulation initiation without affecting extrinsic coagulation. Furthermore, the peptide macrocycle efficiently suppressed plasma coagulation triggered by contact of blood with sample tubes and allowed specific investigation of tissue factor initiated coagulation.
Resumo:
OBJECTIVE: Numerous studies have reported the technical aspects and results of surgical and/or endovascular treatment of cranial dural arteriovenous fistulae (cDAVF) and spinal dural arteriovenous fistulae (sDAVF). Only a few of them have addressed the question of thrombophilic conditions, which may be relevant as pathogenetic factors or can increase the risk for venous thromboembolic events. Therefore, the objective of this study is to compare thrombophilic risk factors in patients with cDAVF and sDAVF with no history of trauma. METHODS: A total of 43 patients (25 with cDAVF and 18 with sDAVF) were included in this study. Blood samples were analyzed for G20210A mutation of the prothrombin gene and factor V Leiden mutation. In all patients, prothrombin time, international normalized ratio, fibrinogen, antithrombin, protein C and S activity, von Willebrand factor antigen, ristocetin cofactor activity, D-dimer, coagulation factor VIII activity, and tissue factor pathway inhibitor were determined. Screening was performed for the occurrence of lupus antiphospholipid and cardiolipin antibodies. RESULTS: The prevalence of G20210A mutation of the prothrombin gene was significantly higher in patients with cDAVF (n = 6) compared with patients with sDAVF (n = 0; P < 0.05, Fisher's exact test). A factor V Leiden mutation was found in 3 patients with sDAVF and in 1 patient with cDAVF (P = 0.29, Fisher's exact test). No significant difference was found for other parameters, except for fibrinogen, but decreased protein C activity was more frequent in patients with cDAVF compared with patients with sDAVF (4 versus 1). Decreased protein S activity was encountered in 3 patients (2 with sDAVF and 1 with cDAVF). Cardiolipin antibodies were found in 2 patients with cDAVF but in none with sDAVF, whereas only 1 patient with sDAVF had lupus antiphospholipid antibodies. CONCLUSION: In both groups of patients with dural arteriovenous fistulae, genetic thrombophilic abnormalities occurred in a higher percentage than in the general population. The differences of the genetic abnormalities may be involved in different pathophysiological mechanism(s) in the development of these distinct neurovascular entities.
Resumo:
Streptococcus pneumoniae is the most common pathogen causing non-epidemic bacterial meningitis worldwide. The immune response and inflammatory processes contribute to the pathophysiology. Hence, the anti-inflammatory dexamethasone is advocated as adjuvant treatment although its clinical efficacy remains a question at issue. In experimental models of pneumococcal meningitis, dexamethasone increased neuronal damage in the dentate gyrus. Here, we investigated expressional changes in the hippocampus and cortex at 72 h after infection when dexamethasone was given to infant rats with pneumococcal meningitis. Nursing Wistar rats were intracisternally infected with Streptococcus pneumoniae to induce experimental meningitis or were sham-infected with pyrogen-free saline. Besides antibiotics, animals were either treated with dexamethasone or saline. Expressional changes were assessed by the use of GeneChip® Rat Exon 1.0 ST Arrays and quantitative real-time PCR. Protein levels of brain-derived neurotrophic factor, cytokines and chemokines were evaluated in immunoassays using Luminex xMAP® technology. In infected animals, 213 and 264 genes were significantly regulated by dexamethasone in the hippocampus and cortex respectively. Separately for the cortex and the hippocampus, Gene Ontology analysis identified clusters of biological processes which were assigned to the predefined categories "inflammation", "growth", "apoptosis" and others. Dexamethasone affected the expression of genes and protein levels of chemokines reflecting diminished activation of microglia. Dexamethasone-induced changes of genes related to apoptosis suggest the downregulation of the Akt-survival pathway and the induction of caspase-independent apoptosis. Signalling of pro-neurogenic pathways such as transforming growth factor pathway was reduced by dexamethasone resulting in a lack of pro-survival triggers. The anti-inflammatory properties of dexamethasone were observed on gene and protein level in experimental pneumococcal meningitis. Further dexamethasone-induced expressional changes reflect an increase of pro-apoptotic signals and a decrease of pro-neurogenic processes. The findings may help to identify potential mechanisms leading to apoptosis by dexamethasone in experimental pneumococcal meningitis.
Resumo:
New anticoagulants promise to have better efficacy, more safety and/or a better manageability than traditional anticoagulants. However, knowledge is limited regarding special situations such as renal insufficiency, obesity, pregnancy, long-term therapy, heparin-induced thrombocytopenia, treatment in patients with mechanical heart valves, use for children, and in patients with a high risk of thromboembolic complications. These situations have rarely or even never been the objective of randomised controlled trials. The purpose of the present article is to summarize and discuss available data on efficacy and safety in these special situations for one of the first new anticoagulants, the indirect factor-Xa inhibitor fondaparinux. Furthermore, we discuss safety in licensed indications and management of bleeding complications and comment on measuring of drug concentration in plasma.
Resumo:
Colorectal cancer is the second leading cause of cancer death in Switzerland. The nihilism that dominated the treatment of these patients for decades has been replaced by a measure of enthusiasm, given recent therapeutic advances. New anticancer drugs such as irinotecan and oxaliplatin have changed the standard chemotherapy treatment of metastatic colorectal cancer. However, the real hype has come from molecular targeted therapy. Identification of cellular processes characteristic of colon cancer has permitted therapeutic targeting with favorable therapeutic index. Inhibition of the epidermal growth factor receptor in the clinic has provided proof of principle that interruption of signal transduction cascades in patients has therapeutic potential. Angiogenesis, especially the vascular endothelial growth factor pathway, has been proven to be another highly successful molecular target. In this article, we will review molecular targets, which are under active clinical investigation in colon cancer.
Primary prophylaxis for venous thromboembolism in ambulatory cancer patients receiving chemotherapy.
Resumo:
BACKGROUND Venous thromboembolism (VTE) often complicates the clinical course of cancer. The risk is further increased by chemotherapy, but the safety and efficacy of primary thromboprophylaxis in cancer patients treated with chemotherapy is uncertain. This is an update of a review first published in February 2012. OBJECTIVES To assess the efficacy and safety of primary thromboprophylaxis for VTE in ambulatory cancer patients receiving chemotherapy compared with placebo or no thromboprophylaxis. SEARCH METHODS For this update, the Cochrane Peripheral Vascular Diseases Group Trials Search Co-ordinator searched the Specialised Register (last searched May 2013), CENTRAL (2013, Issue 5), and clinical trials registries (up to June 2013). SELECTION CRITERIA Randomised controlled trials (RCTs) comparing any oral or parenteral anticoagulant or mechanical intervention to no intervention or placebo, or comparing two different anticoagulants. DATA COLLECTION AND ANALYSIS Data were extracted on methodological quality, patients, interventions, and outcomes including symptomatic VTE and major bleeding as the primary effectiveness and safety outcomes, respectively. MAIN RESULTS We identified 12 additional RCTs (6323 patients) in the updated search so that this update considered 21 trials with a total of 9861 patients, all evaluating pharmacological interventions and performed mainly in patients with advanced cancer. Overall, the risk of bias varied from low to high. One large trial of 3212 patients found a 64% (risk ratio (RR) 0.36, 95% confidence interval (CI) 0.22 to 0.60) reduction of symptomatic VTE with the ultra-low molecular weight heparin (uLMWH) semuloparin relative to placebo, with no apparent difference in major bleeding (RR 1.05, 95% CI 0.55 to 2.00). LMWH, when compared with inactive control, significantly reduced the incidence of symptomatic VTE (RR 0.53, 95% CI 0.38 to 0.75; no heterogeneity, Tau(2) = 0%) with similar rates of major bleeding events (RR 1.30, 95% CI 0.75 to 2.23). In patients with multiple myeloma, LMWH was associated with a significant reduction in symptomatic VTE when compared with the vitamin K antagonist warfarin (RR 0.33, 95% CI 0.14 to 0.83), while the difference between LMWH and aspirin was not statistically significant (RR 0.51, 95% CI 0.22 to 1.17). No major bleeding was observed in the patients treated with LMWH or warfarin and in less than 1% of those treated with aspirin. Only one study evaluated unfractionated heparin against inactive control and found an incidence of major bleeding of 1% in both study groups while not reporting on VTE. When compared with placebo, warfarin was associated with a statistically insignificant reduction of symptomatic VTE (RR 0.15, 95% CI 0.02 to 1.20). Antithrombin, evaluated in one study involving paediatric patients, had no significant effect on VTE nor major bleeding when compared with inactive control. The new oral factor Xa inhibitor apixaban was evaluated in a phase-II dose finding study that suggested a promising low rate of major bleeding (2.1% versus 3.3%) and symptomatic VTE (1.1% versus 10%) in comparison with placebo. AUTHORS' CONCLUSIONS In this update, we confirmed that primary thromboprophylaxis with LMWH significantly reduced the incidence of symptomatic VTE in ambulatory cancer patients treated with chemotherapy. In addition, the uLMWH semuloparin significantly reduced the incidence of symptomatic VTE. However, the broad confidence intervals around the estimates for major bleeding suggest caution in the use of anticoagulation and mandate additional studies to determine the risk to benefit ratio of anticoagulants in this setting. Despite the encouraging results of this review, routine prophylaxis in ambulatory cancer patients cannot be recommended before safety issues are adequately addressed.
Resumo:
Compared with the coronary setting, knowledge about antithrombotic therapies after endovascular treatment (EVT) is inadequate in patients with peripheral artery disease (PAD). Based on a review of trials and guidelines, which is summarized in this article, there is scant evidence that antithrombotic drugs improve outcome after peripheral EVT. To address this knowledge gap, the randomized, open-label, multinational edoxaban in patients with Peripheral Artery Disease (ePAD) study (ClinicalTrials.gov identifier NCT01802775) was designed to explore the safety and efficacy of a combined regimen of antiplatelet therapy with clopidogrel and anticoagulation with edoxaban, a selective and direct factor Xa inhibitor, both combined with aspirin. As of July 2014, 203 patients (144 men; mean age 67 years) from 7 countries have been enrolled. These patients have been allocated to once-daily edoxaban [60 mg for 3 months (or 30 mg in the presence of factors associated with increased exposure)] or clopidogrel (75 mg/d for 3 months). All patients received aspirin (100 mg/d) for the 6-month duration of the study. The primary safety endpoint is major or clinically relevant nonmajor bleeding; the primary efficacy endpoint is restenosis or reocclusion at the treated segment(s) measured at 1, 3, and 6 months using duplex ultrasound scanning. All outcomes will be assessed and adjudicated centrally in a masked fashion. The ePAD study is the first of its kind to investigate a combined regimen of antiplatelet therapy and anticoagulation through factor Xa inhibition with edoxaban.
Resumo:
BACKGROUND REG1 is a novel anticoagulation system consisting of pegnivacogin, an RNA aptamer inhibitor of coagulation factor IXa, and anivamersen, a complementary sequence reversal oligonucleotide. We tested the hypothesis that near complete inhibition of factor IXa with pegnivacogin during percutaneous coronary intervention, followed by partial reversal with anivamersen, would reduce ischaemic events compared with bivalirudin, without increasing bleeding. METHODS We did a randomised, open-label, active-controlled, multicentre, superiority trial to compare REG1 with bivalirudin at 225 hospitals in North America and Europe. We planned to randomly allocate 13,200 patients undergoing percutaneous coronary intervention in a 1:1 ratio to either REG1 (pegnivacogin 1 mg/kg bolus [>99% factor IXa inhibition] followed by 80% reversal with anivamersen after percutaneous coronary intervention) or bivalirudin. Exclusion criteria included ST segment elevation myocardial infarction within 48 h. The primary efficacy endpoint was the composite of all-cause death, myocardial infarction, stroke, and unplanned target lesion revascularisation by day 3 after randomisation. The principal safety endpoint was major bleeding. Analysis was by intention to treat. This trial is registered at ClinicalTrials.gov, identifier NCT01848106. The trial was terminated early after enrolment of 3232 patients due to severe allergic reactions. FINDINGS 1616 patients were allocated REG1 and 1616 were assigned bivalirudin, of whom 1605 and 1601 patients, respectively, received the assigned treatment. Severe allergic reactions were reported in ten (1%) of 1605 patients receiving REG1 versus one (<1%) of 1601 patients treated with bivalirudin. The composite primary endpoint did not differ between groups, with 108 (7%) of 1616 patients assigned REG1 and 103 (6%) of 1616 allocated bivalirudin reporting a primary endpoint event (odds ratio [OR] 1·05, 95% CI 0·80-1·39; p=0·72). Major bleeding was similar between treatment groups (seven [<1%] of 1605 receiving REG1 vs two [<1%] of 1601 treated with bivalirudin; OR 3·49, 95% CI 0·73-16·82; p=0·10), but major or minor bleeding was increased with REG1 (104 [6%] vs 65 [4%]; 1·64, 1·19-2·25; p=0·002). INTERPRETATION The reversible factor IXa inhibitor REG1, as currently formulated, is associated with severe allergic reactions. Although statistical power was limited because of early termination, there was no evidence that REG1 reduced ischaemic events or bleeding compared with bivalirudin. FUNDING Regado Biosciences Inc.
Resumo:
Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.
Resumo:
The c-Src kinase regulates cancer cell invasion through inhibitor of DNA binding/differentiation 1 (ID1). Src and ID1 are frequently overexpressed in human lung adenocarcinoma. The current study aimed at identifying microRNAs (miRNAs) involved in the Src-ID1 signaling in lung cancer. Incubation of lung cancer cells with the Src inhibitor saracatinib led to the upregulation of several miRNAs including miR-29b, which was the most highly upregulated miRNA with predicted binding to the ID1 3'-untranslated region (UTR). Luciferase reporter assays confirmed direct binding of miR-29b to the ID1 3'-UTR. Expression of miR-29b suppressed ID1 levels and significantly reduced migration and invasion. Expression of antisense-miR-29b (anti-miR-29b), on the other hand, enhanced ID1 mRNA and protein levels, and significantly increased lung cancer cell migration and invasion, a hallmark of the Src-ID1 pathway. The ectopic expression of ID1 in miR-29b-overexpressing cells was able to rescue the migratory potential of these cells. Both, anti-miR-29b and ID1 overexpression diminished the effects of the Src inhibitors saracatinib and dasatinib on migration and invasion. Saracatinib and dasatinib decreased c-Myc transcriptional repression on miR-29b and led to increased ID1 protein levels, whereas forced expression of c-Myc repressed miR-29b and induced ID1. In agreement, we showed direct recruitment of c-Myc to the miR-29b promoter. miR-29b was significantly downregulated in primary lung adenocarcinoma samples compared with matched alveolar lung tissue, and miR-29b expression was a significant prognostic factor for patient outcome. These results suggest that miR-29b is involved in the Src-ID1 signaling pathway, is dysregulated in lung adenocarcinoma and is a potential predictive marker for Src kinase inhibitors.
Resumo:
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Resumo:
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.
Resumo:
Meprinα, an astacin-type metalloprotease is overexpressed in colorectal cancer cells and is secreted in a non-polarized fashion, leading to the accumulation of meprinα in the tumor stroma. The transition from normal colonocytes to colorectal cancer correlates with increased meprinα activity at primary tumor sites. A role for meprinα in invasion and metastatic dissemination is supported by its pro-angiogenic and pro-migratory activity. In the present study, we provide evidence for a meprinα-mediated transactivation of the EGFR signaling pathway and suggest that this mechanism is involved in colorectal cancer progression. Using alkaline phosphatase-tagged EGFR ligands and an ELISA assay, we demonstrate that meprinα is capable of shedding epidermal growth factor (EGF) and transforming growth factor-α (TGFα) from the plasma membrane. Shedding was abrogated using actinonin, an inhibitor for meprinα. The physiological effects of meprinα-mediated shedding of EGF and TGFα were investigated with human colorectal adenocarcinoma cells (Caco-2). Proteolytically active meprinα leads to an increase in EGFR and ERK1/2 phosphorylation and subsequently enhances cell proliferation and migration. In conclusion, the implication of meprinα in the EGFR/MAPK signaling pathway indicates a role of meprinα in colorectal cancer progression.
Resumo:
TNFalpha is known to stimulate the development and activity of osteoclasts and of bone resorption. The cytokine was found to mediate bone loss in conjunction with inflammatory diseases such as rheumatoid arthritis or chronic aseptic inflammation induced by wear particles from implants and was suggested to be a prerequisite for the loss of bone mass under estrogen deficiency. In the present study, the regulation of osteoclastogenesis by TNFalpha was investigated in co-cultures of osteoblasts and bone marrow or spleen cells and in cultures of bone marrow and spleen cells grown with CSF-1 and RANKL. Low concentrations of TNFalpha (1 ng/ml) caused a >90% decrease in the number of osteoclasts in co-cultures, but did not affect the development of osteoclasts from bone marrow cells. In cultures with p55TNFR(-/-) osteoblasts and wt BMC, the inhibitory effect was abrogated and TNFalpha induced an increase in the number of osteoclasts in a dose-dependent manner. Osteoblasts were found to release the inhibitory factor(s) into the culture supernatant after simultaneous treatment with 1,25(OH)(2)D(3) and TNFalpha, this activity, but not its release, being resistant to treatment with anti-TNFalpha antibodies. Dexamethasone blocked the secretion of the TNFalpha-dependent inhibitor by osteoblasts, while stimulating the development of osteoclasts. The data suggest that the effects of TNFalpha on the differentiation of osteoclast lineage cells and on bone metabolism may be more complex than hitherto assumed and that these effects may play a role in vivo during therapies for inflammatory diseases.