36 resultados para European ice-sheet


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthicδ18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069–779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (∼940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthicδ18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonicδ18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of a reduced Greenland Ice Sheet (GrIS) on Greenland's surface climate during the Eemian interglacial is studied using a set of simulations with different GrIS realizations performed with a comprehensive climate model. We find a distinct impact of changes in the GrIS topography on Greenland's surface air temperatures (SAT) even when correcting for changes in surface elevation, which influences SAT through the lapse rate effect. The resulting lapse-rate-corrected SAT anomalies are thermodynamically driven by changes in the local surface energy balance rather than dynamically caused through anomalous advection of warm/cold air masses. The large-scale circulation is indeed very stable among all sensitivity experiments and the Northern Hemisphere (NH) flow pattern does not depend on Greenland's topography in the Eemian. In contrast, Greenland's surface energy balance is clearly influenced by changes in the GrIS topography and this impact is seasonally diverse. In winter, the variable reacting strongest to changes in the topography is the sensible heat flux (SHF). The reason is its dependence on surface winds, which themselves are controlled to a large extent by the shape of the GrIS. Hence, regions where a receding GrIS causes higher surface wind velocities also experience anomalous warming through SHF. Vice-versa, regions that become flat and ice-free are characterized by low wind speeds, low SHF, and anomalous low winter temperatures. In summer, we find surface warming induced by a decrease in surface albedo in deglaciated areas and regions which experience surface melting. The Eemian temperature records derived from Greenland proxies, thus, likely include a temperature signal arising from changes in the GrIS topography. For the Eemian ice found in the NEEM core, our model suggests that up to 3.1 °C of the annual mean Eemian warming can be attributed to these topography-related processes and hence is not necessarily linked to large-scale climate variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] Winter circulation types under preindustrial and glacial conditions are investigated and used to quantify their impact on precipitation. The analysis is based on daily mean sea level pressure fields of a highly resolved atmospheric general circulation model and focuses on the North Atlantic and European region. We find that glacial circulation types are dominated by patterns with an east-west pressure gradient, which clearly differs from the predominantly zonal patterns for the recent past. This is also evident in the frequency of occurrence of circulation types when projecting preindustrial circulation types onto the glacial simulations. The elevation of the Laurentide ice sheet is identified as a major cause for these differences. In areas of strong precipitation signals in glacial times, the changes in the frequencies of occurrence of the circulation types explain up to 60% of the total difference between preindustrial and glacial simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice–bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a record of particulate dust concentration and size distribution in subannual resolution measured on the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) ice core drilled in the Atlantic sector of the East Antarctic plateau. The record reaches from present day back to the penultimate glacial until 145,000 years B.P. with subannual resolution from 60,000 years B.P. to the present. Mean dust concentrations are a factor of 46 higher during the glacial (~850–4600 ng/mL) compared to the Holocene (~16–112 ng/mL) with slightly smaller dust particles during the glacial comparedto the Holocene and with an absolute minimum in the dust size at 16,000 years B.P. The changes in dust concentration are mainly attributed to changes in source conditions in southern South America. An increase in the modal value of the dust size suggests that at 16,000 years B.P. a major change in atmospheric circulation apparently allowed more direct transport of dust particles to the EDML drill site. We find a clear in-phase relation of the seasonal variation in dust mass concentration and dust size during the glacial (r(conc,size) = 0.8) but no clear phase relationship during the Holocene (0

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we use morphological and numerical methods to test the hypothesis that seasonally formed fracture patterns in the Martian polar regions result from the brittle failure of seasonal CO2 slab ice. The observations by the High Resolution Imaging Science Experiment (HiRISE) of polar regions of Mars show very narrow dark elongated linear patterns that are observed during some periods of time in spring, disappear in summer and re-appear again in the following spring. They are repeatedly formed in the same areas but they do not repeat the exact pattern from year to year. This leads to the conclusion that they are cracks formed in the seasonal ice layer. Some of models of seasonal surface processes rely on the existence of a transparent form of CO2 ice, so-called slab ice. For the creation of the observed cracks the ice is required to be a continuous media, not an agglomeration of relatively separate particles like a firn. The best explanation for our observations is a slab ice with relatively high transparency in the visible wavelength range. This transparency allows a solid state green-house effect to act underneath the ice sheet raising the pressure by sublimation from below. The trapped gas creates overpressure and the ice sheet breaks at some point creating the observed cracks. We show that the times when the cracks appear are in agreement with the model calculation, providing one more piece of evidence that CO2 slab ice covers polar areas in spring.