24 resultados para Enquête de terrain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

South Tyrol is a region that has been often affected by various mountain hazards such as floods, flash floods, debris flows, rock falls, and snow avalanches. Furthermore, areas located in lower altitudes are often influenced by high temperatures and heat waves. Climate change is expected to influence the frequency, magnitude, and spatial extent of these natural phenomena. For this reason, local authorities and other stakeholders are in need of tools that can enable them to reduce the risk posed by these processes. In the present study, a variety of methods are applied at local level in different places in South Tyrol that aim at: (1) the assessment of future losses caused by the occurrence of debris flows by using a vulnerability curve, (2) the assessment of social vulnerability based on the risk awareness of the exposed people to floods, and (3) the assessment of spatial exposure and social vulnerability of the exposed population to heat waves. The results show that, in South Tyrol, the risk to a number of hazards can be reduced by: (1) improving documentation for past events in order to improve existing vulnerability curves and the assessment of future losses, (2) raising citizens' awareness and responsibility to improve coping capacity to floods, and (3) extending heat wave early warning systems to more low-lying areas of South Tyrol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hellas basin is a large impact basin situated in the southern highlands of Mars. The north-western part of the basin has the lowest elevation (-7.5 km) on the planet and contains a possibly unique terrain type, which we informally call “banded terrain”. The banded terrain is made up of smooth-looking banded deposits that display signs of viscous behavior and a paucity of superimposed impact craters. In this study, we use newly acquired high spatial resolution images from the High Resolution Imaging Science Experiment (HiRISE) in addition to existing datasets to characterize the geomorphology, the morphometry and the architecture of the banded terrain. The banded terrain is generally confined to the NW edge of the Alpheus Colles plateau. The individual bands are ~3–15 km-long, ~0.3 km-wide and are separated by narrow inter-band depressions, which are ~65 m-wide and ~10 m-deep. The bands display several morphologies that vary from linear to concentric forms. Morphometric analysis reveals that the slopes along a given linear or lobate band ranges from 0.5° to 15° (average~6°), whereas the concentric bands are located on flatter terrain (average slope~2–3°). Crater-size frequency analysis yields an Amazonian-Hesperian boundary crater retention age for the terrain (~3 Gyr), which together, with the presence of very few degraded craters, either implies a recent emplacement, resurfacing, or intense erosion. The apparent sensitivity to local topography and preference for concentrating in localized depressions is compatible with deformation as a viscous fluid. In addition, the bands display clear signs of degradation and slumping at their margins along with a suite of other features that include fractured mounds, polygonal cracks at variable size-scales, and knobby/hummocky textures. Together, these features suggest an ice-rich composition for at least the upper layers of the terrain, which is currently being heavily modified through loss of ice and intense weathering, possibly by wind.