152 resultados para Eeg driving
Resumo:
INTRODUCTION: The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN). METHODS: Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps. RESULTS: The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls. CONCLUSIONS: By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling. SIGNIFICANCE: The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise.
Resumo:
The impact of interictal epileptic activity (IEA) on driving is a rarely investigated issue. We analyzed the impact of IEA on reaction time in a pilot study. Reactions to simple visual stimuli (light flash) in the Flash test or complex visual stimuli (obstacle on a road) in a modified car driving computer game, the Steer Clear, were measured during IEA bursts and unremarkable electroencephalography (EEG) periods. Individual epilepsy patients showed slower reaction times (RTs) during generalized IEA compared to RTs during unremarkable EEG periods. RT differences were approximately 300 ms (p < 0.001) in the Flash test and approximately 200 ms (p < 0.001) in the Steer Clear. Prior work suggested that RT differences >100 ms may become clinically relevant. This occurred in 40% of patients in the Flash test and in up to 50% in the Steer Clear. When RT were pooled, mean RT differences were 157 ms in the Flash test (p < 0.0001) and 116 ms in the Steer Clear (p < 0.0001). Generalized IEA of short duration seems to impair brain function, that is, the ability to react. The reaction-time EEG could be used routinely to assess driving ability.
Resumo:
Auditory verbal hallucinations (AVH) in schizophrenia patients assumingly result from a state inadequate activation of the primary auditory system. We tested brain responsiveness to auditory stimulation in healthy controls (n=26), and in schizophrenia patients that frequently (n=18) or never (n=11) experienced AVH. Responsiveness was assessed by driving the EEG with click-tones at 20, 30 and 40Hz. We compared stimulus induced EEG changes between groups using spectral amplitude maps and a global measure of phase-locking (GFS). As expected, the 40Hz stimulation elicited the strongest changes. However, while controls and non-hallucinators increased 40Hz EEG activity during stimulation, a left-lateralized decrease was observed in the hallucinators. These differences were significant (p=.02). As expected, GFS increased during stimulation in controls (p=.08) and non-hallucinating patients (p=.06), which was significant when combining the two groups (p=.01). In contrast, GFS decreased with stimulation in hallucinating patients (p=0.13), resulting in a significantly different GFS response when comparing subjects with and without AVH (p<.01). Our data suggests that normally, 40Hz stimulation leads to the activation of a synchronized network representing the sensory input, but in hallucinating patients, the same stimulation partly disrupts ongoing activity in this network.
Resumo:
OBJECTIVE In patients with epilepsy, seizure relapse and behavioral impairments can be observed despite the absence of interictal epileptiform discharges (IEDs). Therefore, the characterization of pathologic networks when IEDs are not present could have an important clinical value. Using Granger-causal modeling, we investigated whether directed functional connectivity was altered in electroencephalography (EEG) epochs free of IED in left and right temporal lobe epilepsy (LTLE and RTLE) compared to healthy controls. METHODS Twenty LTLE, 20 RTLE, and 20 healthy controls underwent a resting-state high-density EEG recording. Source activity was obtained for 82 regions of interest (ROIs) using an individual head model and a distributed linear inverse solution. Granger-causal modeling was applied to the source signals of all ROIs. The directed functional connectivity results were compared between groups and correlated with clinical parameters (duration of the disease, age of onset, age, and learning and mood impairments). RESULTS We found that: (1) patients had significantly reduced connectivity from regions concordant with the default-mode network; (2) there was a different network pattern in patients versus controls: the strongest connections arose from the ipsilateral hippocampus in patients and from the posterior cingulate cortex in controls; (3) longer disease duration was associated with lower driving from contralateral and ipsilateral mediolimbic regions in RTLE; (4) aging was associated with a lower driving from regions in or close to the piriform cortex only in patients; and (5) outflow from the anterior cingulate cortex was lower in patients with learning deficits or depression compared to patients without impairments and to controls. SIGNIFICANCE Resting-state network reorganization in the absence of IEDs strengthens the view of chronic and progressive network changes in TLE. These resting-state connectivity alterations could constitute an important biomarker of TLE, and hold promise for using EEG recordings without IEDs for diagnosis or prognosis of this disorder.
Resumo:
Cognitive task performance differs considerably between individuals. Besides cognitive capacities, attention might be a source of such differences. The individual's EEG alpha frequency (IAF) is a putative marker of the subject's state of arousal and attention, and was found to be associated with task performance and cognitive capacities. However, little is known about the metabolic substrate (i.e. the network) underlying IAF. Here we aimed to identify this network. Correlation of IAF with regional Cerebral Blood Flow (rCBF) in fifteen young healthy subjects revealed a network of brain areas that are associated with the modulation of attention and preparedness for external input, which are relevant for task execution. We hypothesize that subjects with higher IAF have pre-activated task-relevant networks and thus are both more efficient in the task-execution, and show a reduced fMRI-BOLD response to the stimulus, not because the absolute amount of activation is smaller, but because the additional activation by processing of external input is limited due to the higher baseline.
Resumo:
To assess (1) how large-scale correlation of intracranial EEG signals in the high-frequency range (80-200Hz) evolves from the pre-ictal, through the ictal into the postictal state and (2) whether the contribution of local neuronal activity to large-scale EEG correlation differentiates epileptogenic from non-epileptogenic brain tissue.
Resumo:
Patients with an implantable cardioverter defibrillator (ICD) have an ongoing risk of sudden incapacitation that might cause harm to others while driving a car. Driving restrictions vary across different countries in Europe. The most recent recommendations for driving of ICD patients in Europe were published in 1997 and focused mainly on patients implanted for secondary prevention. In recent years there has been a vast increase in the number of patients with an ICD and in the percentage of patients implanted for primary prevention. The EHRA task force on ICD and driving was formed to reassess the risk of driving for ICD patients based on the literature available. The recommendations are summarized in the following table and are further explained in the document, (Table see text). Driving restrictions are perceived as difficult for patients and their families, and have an immediate consequence for their lifestyle. To increase the adherence to the driving restrictions, adequate discharge of education and follow-up of patients and family are pivotal. The task force members hope this document may serve as an instrument for European and national regulatory authorities to formulate uniform driving regulations.
Resumo:
In Switzerland, approximately 350,000 people aged 70 years or older own a valid driving license. By law, these drivers are medically assessed every other year, most commonly by their general practitioner, to exclude that a medical condition is interfering with their driving skills. A prerequisite for driving is the integration of high-level cognitive functions with perception and motor function. Ageing, per se, does not necessarily impair driving or increase the crash risk. However, medical conditions, such as cognitive impairment and dementia, become more prevalent with advancing age and may contribute to poor driving and an increased crash risk. The extent to which driving skills are impaired depends on the cause of dementia, disease severity, other co-morbidities and individual compensation strategies. Dementia often remains undiagnosed and therefore general practitioners (GPs) can find themselves in the difficult situation to disclose a suspicion about cognitive impairment and queries about medical fitness to drive, at the same time. In addition, the literature suggests that cognitive screening tests, most commonly used by GPs, have a limited role in judging whether an older person remains fit to drive. Further specialist assessment, for example in a memory clinic or on the road testing (ORT), may be helpful when the diagnosis or its implication for driving remain unclear. Here, we review the literature about cognition and driving, for GPs who advise older drivers who wish to continue driving.
Resumo:
To investigate whether there are any objective EEG characteristics that change significantly between specific time periods during maintenance of wakefulness test (MWT) and whether such changes are associated with the ability to appropriately communicate sleepiness.
Resumo:
Epileptic seizures typically reveal a high degree of stereotypy, that is, for an individual patient they are characterized by an ordered and predictable sequence of symptoms and signs with typically little variability. Stereotypy implies that ictal neuronal dynamics might have deterministic characteristics, presumably most pronounced in the ictogenic parts of the brain, which may provide diagnostically and therapeutically important information. Therefore the goal of our study was to search for indications of determinism in periictal intracranial electroencephalography (EEG) studies recorded from patients with pharmacoresistent epilepsy.
Resumo:
Daytime sleepiness is a complaint of about 5-10% in a normal population. The consequences, such as impaired performance and accidents at the workplace and while driving, have major impact on the affected and on society. According to Swiss federal statistics only 1-3% of all motor vehicle accidents are due to excessive daytime sleepiness, which is in great contrast to a figure of 10 to 20% of all accidents derived from scientific studies. Due to the inadequate statistical representation of the problem, insufficient countermeasures have been realized, and the state of drivers breaching traffic regulations is not adequately investigated in this respect. The most prevalent cause of microsleep induced accidents is certainly lack of sleep due to social or professional reasons. A treating physician must also consider sedating drugs and various diseases. The typical characteristics of accidents due to falling asleep at the wheel and the risk factors involved are well established, so that informing the general public, taking prophylactic countermeasures and a targeted investigation in this respect of drivers who have breached the law are all feasible. Since symptoms of sleepiness can be recognized well before any impairment of performance occurs, the most important countermeasure is information of the drivers on the risk factors and on efficient countermeasures against sleepiness at the wheel. Besides correct diagnosis and treatment, the primary goal of physicians treating patients with pathological daytime sleepiness is to inform them at an early stage about the risks of sleepiness and the large responsibility they bear while driving. This information should be written down in the patients' records. Professional drivers suffering from daytime sleepiness, drivers who have already had an accident due to microsleep and unreasonable drivers should be referred to a centre of sleep disorders for objective measurements of sleepiness.
Resumo:
Patients with panic disorder (PD) have a bias to respond to normal stimuli in a fearful way. This may be due to the preactivation of fear-associated networks prior to stimulus perception. Based on EEG, we investigated the difference between patients with PD and normal controls in resting state activity using features of transiently stable brain states (microstates). EEGs from 18 drug-naive patients and 18 healthy controls were analyzed. Microstate analysis showed that one class of microstates (with a right-anterior to left-posterior orientation of the mapped field) displayed longer durations and covered more of the total time in the patients than controls. Another microstate class (with a symmetric, anterior-posterior orientation) was observed less frequently in the patients compared to controls. The observation that selected microstate classes differ between patients with PD and controls suggests that specific brain functions are altered already during resting condition. The altered resting state may be the starting point of the observed dysfunctional processing of phobic stimuli.
Resumo:
Abnormal perceptions and cognitions in schizophrenia might be related to abnormal resting states of the brain. Previous research found that a specific class (class D) of sub-second electroencephalography (EEG) microstates was shortened in schizophrenia. This shortening correlated with positive symptoms. We questioned if this reflected positive psychotic traits or present psychopathology.