44 resultados para EXTREME CLIMATIC EVENTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate models predict more frequent and more severe extreme events (e.g., heat waves, extended drought periods, flooding) in many regions for the next decades. The impact of adverse environmental conditions on crop plants is ecologically and economically relevant. This review is focused on drought and heat effects on physiological status and productivity of agronomically important plants. Stomatal opening represents an important regulatory mechanism during drought and heat stress since it influences simultaneously water loss via transpiration and CO2 diffusion into the leaf apoplast which further is utilized in photosynthesis. Along with the reversible short-term control of stomatal opening, stomata and leaf epidermis may produce waxy deposits and irreversibly down-regulate the stomatal conductance and non-stomatal transpiration. As a consequence photosynthesis will be negatively affected. Rubisco activase—a key enzyme in keeping the Calvin cycle functional—is heat-sensitive and may become a limiting factor at elevated temperature. The accumulated reactive oxygen species (ROS) during stress represent an additional challenge under unfavorable conditions. Drought and heat cause accumulation of free amino acids which are partially converted into compatible solutes such as proline. This is accompanied by lower rates of both nitrate reduction and de novo amino acid biosynthesis. Protective proteins (e.g., dehydrins, chaperones, antioxidant enzymes or the key enzyme for proline biosynthesis) play an important role in leaves and may be present at higher levels under water deprivation or high temperatures. On the whole plant level, effects on long-distance translocation of solutes via xylem and phloem and on leaf senescence (e.g., anticipated, accelerated or delayed senescence) are important. The factors mentioned above are relevant for the overall performance of crops under drought and heat and must be considered for genotype selection and breeding programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Since its discovery in Greenland ice cores, the millennial scale climatic variability of the last glacial period has been increasingly documented at all latitudes with studies focusing mainly on Marine Isotopic Stage 3 (MIS 3; 28–60 thousand of years before present, hereafter ka) and characterized by short Dansgaard-Oeschger (DO) events. Recent and new results obtained on the EPICA and NorthGRIP ice cores now precisely describe the rapid variations of Antarctic and Greenland temperature during MIS 5 (73.5–123 ka), a time period corresponding to relatively high sea level. The results display a succession of abrupt events associated with long Greenland InterStadial phases (GIS) enabling us to highlight a sub-millennial scale climatic variability depicted by (i) short-lived and abrupt warming events preceding some GIS (precursor-type events) and (ii) abrupt warming events at the end of some GIS (rebound-type events). The occurrence of these sub-millennial scale events is suggested to be driven by the insolation at high northern latitudes together with the internal forcing of ice sheets. Thanks to a recent NorthGRIP-EPICA Dronning Maud Land (EDML) common timescale over MIS 5, the bipolar sequence of climatic events can be established at millennial to sub-millennial timescale. This shows that for extraordinary long stadial durations the accompanying Antarctic warming amplitude cannot be described by a simple linear relationship between the two as expected from the bipolar seesaw concept. We also show that when ice sheets are extensive, Antarctica does not necessarily warm during the whole GS as the thermal bipolar seesaw model would predict, questioning the Greenland ice core temperature records as a proxy for AMOC changes throughout the glacial period.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an analysis of daily extreme precipitation events for the extended winter season (October–March) at 20 Mediterranean coastal sites covering the period 1950–2006. The heavy tailed behaviour of precipitation extremes and estimated return levels, including associated uncertainties, are derived applying a procedure based on the Generalized Pareto Distribution, in combination with recently developed methods. Precipitation extremes have an important contribution to make seasonal totals (approximately 60% for all series). Three stations (one in the western Mediterranean and the others in the eastern basin) have a 5-year return level above 100 mm, while the lowest value (estimated for two Italian series) is equal to 58 mm. As for the 50-year return level, an Italian station (Genoa) has the highest value of 264 mm, while the other values range from 82 to 200 mm. Furthermore, six series (from stations located in France, Italy, Greece, and Cyprus) show a significant negative tendency in the probability of observing an extreme event. The relationship between extreme precipitation events and the large scale atmospheric circulation at the upper, mid and low troposphere is investigated by using NCEP/NCAR reanalysis data. A 2-step classification procedure identifies three significant anomaly patterns both for the western-central and eastern part of the Mediterranean basin. In the western Mediterranean, the anomalous southwesterly surface to mid-tropospheric flow is connected with enhanced moisture transport from the Atlantic. During ≥5-year return level events, the subtropical jet stream axis is aligned with the African coastline and interacts with the eddy-driven jet stream. This is connected with enhanced large scale ascending motions, instability and leads to the development of severe precipitation events. For the eastern Mediterranean extreme precipitation events, the identified anomaly patterns suggest warm air advection connected with anomalous ascent motions and an increase of the low- to mid-tropospheric moisture. Furthermore, the jet stream position (during ≥5-year return level events) supports the eastern basin being in a divergence area, where ascent motions are favoured. Our results contribute to an improved understanding of daily precipitation extremes in the cold season and associated large scale atmospheric features.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a first step to obtain a proxy record of past climatic events (including the El Ni (n) over tildeo-Southern Oscillation) in the normally aseasonal tropical environment of Sabah, a radial segment from a recently fallen dipterocarp (Shorea Superba) was radiocarbon dated and subjected to carbon isotope analysis. The high-precision radiocarbon results fell into the ambiguous modern plateau where several calibrated dates can exist for each sample. Dating was achieved by wiggle matching using a Bayesian approach to calibration. Using the defined growth characteristics of Shorea superba, probability density distributions were calculated and improbable dates rejected. It was found that the tree most likely started growing around AD 1660-1685. A total of 173 apparent growth increments were measured and, therefore, it could be determined that the tree formed one ring approximately every two years. Stable carbon isotope values were obtained from resin-extracted wholewood from each ring. Carbon cycling is evident in the `juvenile effect', resulting from the assimilation of respired carbon dioxide and lower light levels below the canopy, and in the `anthropogenic effect' caused by increased industrial activity in the late-nineteenth and twentieth centuries. This study demonstrates that palaeoenvironmental information can be obtained from trees growing in aseasonal environments, where climatic conditions prevent the formation of well-defined annual rings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to their outstanding resolution and well-constrained chronologies, Greenland ice-core records provide a master record of past climatic changes throughout the Last Interglacial–Glacial cycle in the North Atlantic region. As part of the INTIMATE (INTegration of Ice-core, MArine and TErrestrial records) project, protocols have been proposed to ensure consistent and robust correlation between different records of past climate. A key element of these protocols has been the formal definition and ordinal numbering of the sequence of Greenland Stadials (GS) and Greenland Interstadials (GI) within the most recent glacial period. The GS and GI periods are the Greenland expressions of the characteristic Dansgaard–Oeschger events that represent cold and warm phases of the North Atlantic region, respectively. We present here a more detailed and extended GS/GI template for the whole of the Last Glacial period. It is based on a synchronization of the NGRIP, GRIP, and GISP2 ice-core records that allows the parallel analysis of all three records on a common time scale. The boundaries of the GS and GI periods are defined based on a combination of stable-oxygen isotope ratios of the ice (δ18O, reflecting mainly local temperature) and calcium ion concentrations (reflecting mainly atmospheric dust loading) measured in the ice. The data not only resolve the well-known sequence of Dansgaard–Oeschger events that were first defined and numbered in the ice-core records more than two decades ago, but also better resolve a number of short-lived climatic oscillations, some defined here for the first time. Using this revised scheme, we propose a consistent approach for discriminating and naming all the significant abrupt climatic events of the Last Glacial period that are represented in the Greenland ice records. The final product constitutes an extended and better resolved Greenland stratotype sequence, against which other proxy records can be compared and correlated. It also provides a more secure basis for investigating the dynamics and fundamental causes of these climatic perturbations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. The cover of plant species was recorded annually from 1988 to 2000 in nine spatially replicated plots in a species-rich, semi-natural meadow at Negrentino (southern Alps). This period showed large climatic variation and included the centennial maximum and minimum frequency of days with ≥ 10 mm of rain. 2. Changes in species composition were compared between three 4-year intervals characterized by increasingly dry weather (1988–91), a preceding extreme drought (1992–95), and increasingly wet weather (1997–2000). Redundancy analysis and anova with repeated spatial replicates were used to find trends in vegetation data across time. 3. Recruitment capacity, the potential for fast clonal growth and seasonal expansion rate were determined for abundant taxa and tested in general linear models (GLM) as predictors for rates of change in relative cover of species across the climatically defined 4-year intervals. 4. Relative cover of the major growth forms present, graminoids and forbs, changed more in the period following extreme drought than at other times. Recruitment capacity was the only predictor of species’ rates of change. 5. Following perturbation, re-colonization was the primary driver of vegetation dynamics. The dominant grasses, which lacked high recruitment from seed, therefore decreased in relative abundance. This effect persisted until the end of the study and may represent a lasting response to an extreme climatic event.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Eight synchronous pre-Roman cold phases were found at 9600–9200, 8600–8150, 7550–6900, 6600– 6200, 5350–4900, 4600–4400, 3500–3200 and 2600–2350 radiocarbon years BP by reconstructing past climate at two sites on the Swiss Plateau and at timberline in the Alps. The cooling events during the early-and mid-Holocene represent temperature values similar to today, and apparently the onset of cooling events represents a deviation from today's mean annual temperature of about 1°C and is triggered at a 1000-year periodicity. At Wallisellen-Langachermoos (440 m), a former oligotrophic lake near Zürich, the correlation between sum mertime lake levels and the seed production of the amphi-Atlantic aquatic plantNajas flexilis was used to reconstruct lake levels over a 3000-year period during the first part of the Holocene. At Lake Seedorf on the western Swiss Plateau (609 m) the sedimentological, palynological and macrofossil record revealed fluctuations of lake levels for the complete Holocene. From Lago Basso in the southern Alps (2250 m, Val San Giacomo near Splügen Pass, Northern Italy) the terrestrial plant macrofossils – especiallyPinus cembra andLarix – allowed the reconstruction of timberline fluctuations controlled by climate. A similar climatic pattern was found at Gouillé Rion pond in the central Swiss Alps (2343 m, Val d'Hérémence) with plant macrofossils and pollen concentrations and percentages. We postulate that these climatic events are detectable throughout central Europe by independent methods in combination with precise AMS-radiocarbon datings on terrestrial plant remains. Our data fit other proxy records of regional climatic change, such as cool intervals from Greenland ice cores, glacier movements in the Swiss and Austrian Alps, and dendro-densitometry on subfossil wood, as well as the palaeoclimatic data from the Jura Mountains of France obtained by sedimentological analyses. Thus our data indicate that the Northern Hemisphere climate was less stable during the Holocene than previously believed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Throughout the last millennium, mankind was affected by prolonged deviations from the climate mean state. While periods like the Maunder Minimum in the 17th century have been assessed in greater detail, earlier cold periods such as the 15th century received much less attention due to the sparse information available. Based on new evidence from different sources ranging from proxy archives to model simulations, it is now possible to provide an end-to-end assessment about the climate state during an exceptionally cold period in the 15th century, the role of internal, unforced climate variability and external forcing in shaping these extreme climatic conditions, and the impacts on and responses of the medieval society in Central Europe. Climate reconstructions from a multitude of natural and human archives indicate that, during winter, the period of the early Spörer Minimum (1431–1440 CE) was the coldest decade in Central Europe in the 15th century. The particularly cold winters and normal but wet summers resulted in a strong seasonal cycle that challenged food production and led to increasing food prices, a subsistence crisis, and a famine in parts of Europe. As a consequence, authorities implemented adaptation measures, such as the installation of grain storage capacities, in order to be prepared for future events. The 15th century is characterised by a grand solar minimum and enhanced volcanic activity, which both imply a reduction of seasonality. Climate model simulations show that periods with cold winters and strong seasonality are associated with internal climate variability rather than external forcing. Accordingly, it is hypothesised that the reconstructed extreme climatic conditions during this decade occurred by chance and in relation to the partly chaotic, internal variability within the climate system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The floods that occurred on the Aare and Rhine rivers in May 2015 and the mostly successful handling of this event in terms of flood protection measures are a good reminder of how important it is to comprehend the causes and processes involved in such natural hazards. While the needed data series of gauge measurements and peak discharge calculations reach back to the 19th century, historical records dating further back in time can provide additional and useful information to help understanding extreme flood events and to evaluate prevention measures such as river dams and corrections undertaken prior to instrumental measurements. In my PhD project I will use a wide range of historical sources to assess and quantify past extreme flood events. It is part of the SNF-funded project “Reconstruction of the Genesis, Process and Impact of Major Pre-instrumental Flood Events of Major Swiss Rivers Including a Peak Discharge Quantification” and will cover the research locations Fribourg (Saane R.), Burgdorf (Emme R.), Thun, Bern (both Aare R.), and the Lake of Constance at the locations Lindau, Constance and Rorschach. My main goals are to provide a long time series of quantitative data for extreme flood events, to discuss the occurring changes in these data, and to evaluate the impact of the aforementioned human influences on the drainage system. Extracting information given in account books from the towns of Basel and Solothurn may also enable me to assess the frequency and seasonality of less severe river floods. Finally, historical information will be used for remodeling the historical hydrological regime to homogenize the historical data series to modern day conditions and thus make it comparable to the data provided by instrumental measurements. The method I will apply for processing all information provided by historical sources such as chronicles, newspapers, institutional records, as well as flood marks, paintings and archeological evidence has been developed and successfully applied to the site of Basel by Wetter et al. (2011). They have also shown that data homogenization is possible by reconstructing previous stream flow conditions using historical river profiles and by carefully observing and re-constructing human changes of the river bed and its surroundings. Taken all information into account, peak discharges for past extreme flood events will be calculated with a one-dimensional hydrological model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m similar to 0.094 - 0.097) in the Volta populations. Conclusions: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The large-crowned emergent tree Microberlinia bisulcata dominates rain forest groves at Korup National Park, Cameroon, along with two codominants, Tetraberlinia bifoliolata and T. korupensis. M. bisulcata has a pronounced modal size frequency distribution around 110 cm stem diameter: its recruitment potential is very poor. It is a long-lived light-demanding species, one of many found in African forests. Tetraberlinia species lack modality, are more shade tolerant, and recruit better. All three species are ectomycorrhizal. M. bisulcata dominates grove basal area, even though it has similar numbers of trees (≥50 cm stem diameter) as each of the other two species. This situation presented a conundrum that prompted a long-term study of grove dynamics. Enumerations of two plots (82.5 and 56.25 ha) between 1990 and 2010 showed mortality and recruitment of M. bisulcata to be very low (both rates 0.2% per year) compared with Tetraberlinia (2.4% and 0.8% per year), and M. bisulcata grows twice as fast as the Tetraberlinia. Ordinations indicated that these three species determined community structure by their strong negative associations while other species showed almost none. Ranked species abundance curves fitted the Zipf-Mandelbrot model well and allowed “overdominance” of M. bisulcata to be estimated. Spatial analysis indicated strong repulsion by clusters of large (50 to <100 cm) and very large (≥100 cm) M. bisulcata of their own medium-sized (10 to <50 cm) trees and all sizes of Tetraberlinia. This was interpreted as competition by M. bisulcata increasing its dominance, but also inhibition of its own replacement potential. Stem coring showed a modal age of 200 years for M. bisulcata, but with large size variation (50–150 cm). Fifty-year model projections suggested little change in medium, decreases in large, and increases in very large trees of M. bisulcata, accompanied by overall decreases in medium and large trees of Tetraberlinia species. Realistically increasing very-large-tree mortality led to grove collapse without short-term replacement. M. bisulcata most likely depends on climatic events to rebuild its stands: the ratio of disturbance interval to median species' longevity is important. A new theory of transient dominance explains how M. bisulcata may be cycling in abundance over time and displaying nonequilibrium dynamics.