25 resultados para Dynamic data set visualization
Resumo:
The Twentieth Century Reanalysis (20CR) is an atmospheric dataset consisting of 56 ensemble members, which covers the entire globe and reaches back to 1871. To assess the suitability of this dataset for studying past extremes, we analysed a prominent extreme event, namely the Galveston Hurricane, which made landfall in September 1900 in Texas, USA. The ensemble mean of 20CR shows a track of the pressure minimum with a small standard deviation among the 56 ensemble members in the area of the Gulf of Mexico. However, there are systematic differences between the assimilated “Best Track” from the International Best Track Archive for Climate Stewardship (IBTrACS) and the ensemble mean track in 20CR. East of the Strait of Florida, the tracks derived from 20CR are located systematically northeast of the assimilated track while in the Gulf of Mexico, the 20CR tracks are systematically shifted to the southwest compared to the IBTrACS position. The hurricane can also be observed in the wind field, which shows a cyclonic rotation and a relatively calm zone in the centre of the hurricane. The 20CR data reproduce the pressure gradient and cyclonic wind field. Regarding the amplitude of the wind speeds, the ensemble mean values from 20CR are significantly lower than the wind speeds known from measurements.
A global historical ozone data set and prominent features of stratospheric variability prior to 1979
Resumo:
We present a vertically resolved zonal mean monthly mean global ozone data set spanning the period 1901 to 2007, called HISTOZ.1.0. It is based on a new approach that combines information from an ensemble of chemistry climate model (CCM) simulations with historical total column ozone information. The CCM simulations incorporate important external drivers of stratospheric chemistry and dynamics (in particular solar and volcanic effects, greenhouse gases and ozone depleting substances, sea surface temperatures, and the quasi-biennial oscillation). The historical total column ozone observations include ground-based measurements from the 1920s onward and satellite observations from 1970 to 1976. An off-line data assimilation approach is used to combine model simulations, observations, and information on the observation error. The period starting in 1979 was used for validation with existing ozone data sets and therefore only ground-based measurements were assimilated. Results demonstrate considerable skill from the CCM simulations alone. Assimilating observations provides additional skill for total column ozone. With respect to the vertical ozone distribution, assimilating observations increases on average the correlation with a reference data set, but does not decrease the mean squared error. Analyses of HISTOZ.1.0 with respect to the effects of El Niño–Southern Oscillation (ENSO) and of the 11 yr solar cycle on stratospheric ozone from 1934 to 1979 qualitatively confirm previous studies that focussed on the post-1979 period. The ENSO signature exhibits a much clearer imprint of a change in strength of the Brewer–Dobson circulation compared to the post-1979 period. The imprint of the 11 yr solar cycle is slightly weaker in the earlier period. Furthermore, the total column ozone increase from the 1950s to around 1970 at northern mid-latitudes is briefly discussed. Indications for contributions of a tropospheric ozone increase, greenhouse gases, and changes in atmospheric circulation are found. Finally, the paper points at several possible future improvements of HISTOZ.1.0.
Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600–present
Resumo:
As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry–climate model (CCM) simulations. This new volcanic forcing, covering the 1600–present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600–present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.
Resumo:
Lake water temperature (LWT) is an important driver of lake ecosystems and it has been identified as an indicator of climate change. Consequently, the Global Climate Observing System (GCOS) lists LWT as an essential climate variable. Although for some European lakes long in situ time series of LWT do exist, many lakes are not observed or only on a non-regular basis making these observations insufficient for climate monitoring. Satellite data can provide the information needed. However, only few satellite sensors offer the possibility to analyse time series which cover 25 years or more. The Advanced Very High Resolution Radiometer (AVHRR) is among these and has been flown as a heritage instrument for almost 35 years. It will be carried on for at least ten more years, offering a unique opportunity for satellite-based climate studies. Herein we present a satellite-based lake surface water temperature (LSWT) data set for European water bodies in or near the Alps based on the extensive AVHRR 1 km data record (1989–2013) of the Remote Sensing Research Group at the University of Bern. It has been compiled out of AVHRR/2 (NOAA-07, -09, -11, -14) and AVHRR/3 (NOAA-16, -17, -18, -19 and MetOp-A) data. The high accuracy needed for climate related studies requires careful pre-processing and consideration of the atmospheric state. The LSWT retrieval is based on a simulation-based scheme making use of the Radiative Transfer for TOVS (RTTOV) Version 10 together with ERA-interim reanalysis data from the European Centre for Medium-range Weather Forecasts. The resulting LSWTs were extensively compared with in situ measurements from lakes with various sizes between 14 and 580 km2 and the resulting biases and RMSEs were found to be within the range of −0.5 to 0.6 K and 1.0 to 1.6 K, respectively. The upper limits of the reported errors could be rather attributed to uncertainties in the data comparison between in situ and satellite observations than inaccuracies of the satellite retrieval. An inter-comparison with the standard Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature product exhibits RMSEs and biases in the range of 0.6 to 0.9 and −0.5 to 0.2 K, respectively. The cross-platform consistency of the retrieval was found to be within ~ 0.3 K. For one lake, the satellite-derived trend was compared with the trend of in situ measurements and both were found to be similar. Thus, orbital drift is not causing artificial temperature trends in the data set. A comparison with LSWT derived through global sea surface temperature (SST) algorithms shows lower RMSEs and biases for the simulation-based approach. A running project will apply the developed method to retrieve LSWT for all of Europe to derive the climate signal of the last 30 years. The data are available at doi:10.1594/PANGAEA.831007.
Resumo:
The OPERA detector, designed to search for νμ → ντ oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector was used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected chargeseparated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio Rμ ≡ Nμ+/Nμ− was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowedminimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1–20 TeV investigated by OPERA, Rμ is well described by a parametric model including only pion and kaon contributions to themuon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to 200 TeV/nucleon primary energy.
Resumo:
Dynamic changes in ERP topographies can be conveniently analyzed by means of microstates, the so-called "atoms of thoughts", that represent brief periods of quasi-stable synchronized network activation. Comparing temporal microstate features such as on- and offset or duration between groups and conditions therefore allows a precise assessment of the timing of cognitive processes. So far, this has been achieved by assigning the individual time-varying ERP maps to spatially defined microstate templates obtained from clustering the grand mean data into predetermined numbers of topographies (microstate prototypes). Features obtained from these individual assignments were then statistically compared. This has the problem that the individual noise dilutes the match between individual topographies and templates leading to lower statistical power. We therefore propose a randomization-based procedure that works without assigning grand-mean microstate prototypes to individual data. In addition, we propose a new criterion to select the optimal number of microstate prototypes based on cross-validation across subjects. After a formal introduction, the method is applied to a sample data set of an N400 experiment and to simulated data with varying signal-to-noise ratios, and the results are compared to existing methods. In a first comparison with previously employed statistical procedures, the new method showed an increased robustness to noise, and a higher sensitivity for more subtle effects of microstate timing. We conclude that the proposed method is well-suited for the assessment of timing differences in cognitive processes. The increased statistical power allows identifying more subtle effects, which is particularly important in small and scarce patient populations.
Resumo:
When estimating the effect of treatment on HIV using data from observational studies, standard methods may produce biased estimates due to the presence of time-dependent confounders. Such confounding can be present when a covariate, affected by past exposure, is both a predictor of the future exposure and the outcome. One example is the CD4 cell count, being a marker for disease progression for HIV patients, but also a marker for treatment initiation and influenced by treatment. Fitting a marginal structural model (MSM) using inverse probability weights is one way to give appropriate adjustment for this type of confounding. In this paper we study a simple and intuitive approach to estimate similar treatment effects, using observational data to mimic several randomized controlled trials. Each 'trial' is constructed based on individuals starting treatment in a certain time interval. An overall effect estimate for all such trials is found using composite likelihood inference. The method offers an alternative to the use of inverse probability of treatment weights, which is unstable in certain situations. The estimated parameter is not identical to the one of an MSM, it is conditioned on covariate values at the start of each mimicked trial. This allows the study of questions that are not that easily addressed fitting an MSM. The analysis can be performed as a stratified weighted Cox analysis on the joint data set of all the constructed trials, where each trial is one stratum. The model is applied to data from the Swiss HIV cohort study.