50 resultados para Dlx5 Protein Mouse
Resumo:
BACKGROUND: Loss-of-function mutations in SCN5A, the gene encoding Na(v)1.5 Na+ channel, are associated with inherited cardiac conduction defects and Brugada syndrome, which both exhibit variable phenotypic penetrance of conduction defects. We investigated the mechanisms of this heterogeneity in a mouse model with heterozygous targeted disruption of Scn5a (Scn5a(+/-) mice) and compared our results to those obtained in patients with loss-of-function mutations in SCN5A. METHODOLOGY/PRINCIPAL FINDINGS: Based on ECG, 10-week-old Scn5a(+/-) mice were divided into 2 subgroups, one displaying severe ventricular conduction defects (QRS interval>18 ms) and one a mild phenotype (QRS< or = 18 ms; QRS in wild-type littermates: 10-18 ms). Phenotypic difference persisted with aging. At 10 weeks, the Na+ channel blocker ajmaline prolonged QRS interval similarly in both groups of Scn5a(+/-) mice. In contrast, in old mice (>53 weeks), ajmaline effect was larger in the severely affected subgroup. These data matched the clinical observations on patients with SCN5A loss-of-function mutations with either severe or mild conduction defects. Ventricular tachycardia developed in 5/10 old severely affected Scn5a(+/-) mice but not in mildly affected ones. Correspondingly, symptomatic SCN5A-mutated Brugada patients had more severe conduction defects than asymptomatic patients. Old severely affected Scn5a(+/-) mice but not mildly affected ones showed extensive cardiac fibrosis. Mildly affected Scn5a(+/-) mice had similar Na(v)1.5 mRNA but higher Na(v)1.5 protein expression, and moderately larger I(Na) current than severely affected Scn5a(+/-) mice. As a consequence, action potential upstroke velocity was more decreased in severely affected Scn5a(+/-) mice than in mildly affected ones. CONCLUSIONS: Scn5a(+/-) mice show similar phenotypic heterogeneity as SCN5A-mutated patients. In Scn5a(+/-) mice, phenotype severity correlates with wild-type Na(v)1.5 protein expression.
Distribution of amyloid precursor protein and amyloid-beta in ocular hypertensive C57BL/6 mouse eyes
Resumo:
Amyloid precursor protein (APP) and amyloid-beta (Abeta) appear to participate in the pathophysiology of retinal ganglion cell (RGC) death in glaucoma. We, therefore, determined the distribution of APP and Abeta in the retinas of C57BL/6 mice after induction of chronic ocular hypertension.
Resumo:
PURPOSE: Evidence suggests that altered metabolism of amyloid precursor protein (APP) may play a role in the pathophysiology of retinal ganglion cell (RGC) death in the etiology of glaucoma. The authors sought to determine the distribution of APP and amyloid-beta (Abeta) in DBA/2J glaucomatous mouse retinas. METHODS: The retinas of 3- and 15-month-old DBA/2J mice and C57/BL-6 mice (control group) were fixed with 4% paraformaldehyde and processed for immunohistochemistry. Antibodies used included a polyclonal antibody to the C terminus of Abeta 40 and a polyclonal antibody to the APP ectodomain. Immunohistochemically stained tissue was graded using light microscopy. Distribution and semiquantitative expression of APP and Abeta in young and old glaucomatous and normal retinas were determined and compared. RESULTS: Strong APP and Abeta immunoreactivity was found in the RGC layer, optic nerve, and pia/dura of old DBA/2J retinas, with considerably higher intensity found in the old compared with the young DBA/2J mice. In contrast to glaucomatous mice, the control group did not show any notable age-related difference. CONCLUSIONS: Disruption of the homeostatic properties of secreted APP with consecutive Abeta cytotoxicity might be a contributing factor of ganglion cell loss in glaucomatous mouse retinas.
Resumo:
PURPOSE: Activation of the double-stranded RNA-activated protein kinase (PKR) leads to the induction of various pathways including the down-regulation of translation through phosphorylation of the eukaryotic translation initiation factor 2alpha (eIF-2alpha). There have been no reports to date about the role of PKR in radiation sensitivity. EXPERIMENTAL DESIGN: A clonogenic survival assay was used to investigate the sensitivity of PKR mouse embryo fibroblasts (MEF) to radiation therapy. 2-Aminopurine (2-AP), a chemical inhibitor of PKR, was used to inhibit PKR activation. Nuclear factor-kappaB (NF-kappaB) activation was assessed by electrophoretic mobility shift assay (EMSA). Expression of PKR and downstream targets was examined by Western blot analysis and immunofluorescence. RESULTS: Ionizing radiation leads to dose- and time-dependent increases in PKR expression and function that contributes to increased cellular radiation resistance as shown by clonogenic survival and terminal nucleotidyl transferase-mediated nick end labeling (TUNEL) apoptosis assays. Specific inhibition of PKR with the chemical inhibitor 2-AP restores radiation sensitivity. Plasmid transfection of the PKR wild-type (wt) gene into PKR(-/-) MEFs leads to increased radiation resistance. The protective effect of PKR to radiation may be mediated in part through NF-kappaB and Akt because both NF-kappaB and Akt are activated after ionizing radiation in PKR+/+ but not PKR-/- cells. CONCLUSIONS: We suggest a novel role for PKR as a mediator of radiation resistance modulated in part through the protective effects of NF-kappaB and Akt activation. The modification of PKR activity may be a novel strategy in the future to overcome radiation resistance.
Resumo:
AIM As technological interventions treating acute myocardial infarction (MI) improve, post-ischemic heart failure increasingly threatens patient health. The aim of the current study was to test whether FADD could be a potential target of gene therapy in the treatment of heart failure. METHODS Cardiomyocyte-specific FADD knockout mice along with non-transgenic littermates (NLC) were subjected to 30 minutes myocardial ischemia followed by 7 days of reperfusion or 6 weeks of permanent myocardial ischemia via the ligation of left main descending coronary artery. Cardiac function were evaluated by echocardiography and left ventricular (LV) catheterization and cardiomyocyte death was measured by Evans blue-TTC staining, TUNEL staining, and caspase-3, -8, and -9 activities. In vitro, H9C2 cells transfected with ether scramble siRNA or FADD siRNA were stressed with chelerythrin for 30 min and cleaved caspase-3 was assessed. RESULTS FADD expression was significantly decreased in FADD knockout mice compared to NLC. Ischemia/reperfusion (I/R) upregulated FADD expression in NLC mice, but not in FADD knockout mice at the early time. FADD deletion significantly attenuated I/R-induced cardiac dysfunction, decreased myocardial necrosis, and inhibited cardiomyocyte apoptosis. Furthermore, in 6 weeks long term permanent ischemia model, FADD deletion significantly reduced the infarct size (from 41.20 ± 3.90% in NLC to 26.83 ± 4.17% in FADD deletion), attenuated myocardial remodeling, improved cardiac function and improved survival. In vitro, FADD knockdown significantly reduced chelerythrin-induced the level of cleaved caspase-3. CONCLUSION Taken together, our results suggest FADD plays a critical role in post-ischemic heart failure. Inhibition of FADD retards heart failure progression. Our data supports the further investigation of FADD as a potential target for genetic manipulation in the treatment of heart failure.
Resumo:
Time-dependent refractoriness of calcium (Ca2+) release in cardiac myocytes is an important factor in determining whether pro-arrhythmic release patterns develop. At the subcellular level of the Ca2+ spark, recent studies have suggested that recovery of spark amplitude is controlled by local sarcoplasmic reticulum (SR) refilling whereas refractoriness of spark triggering depends on both refilling and the sensitivity of the ryanodine receptor (RyR) release channels that produce sparks. Here we studied regulation of Ca2+ spark refractoriness in mouse ventricular myocytes by examining how β-adrenergic stimulation influenced sequences of Ca2+ sparks originating from individual RyR clusters. Our protocol allowed us to separately measure recovery of spark amplitude and delays between successive sparks, and data were interpreted quantitatively through simulations with a stochastic mathematical model. We found that, compared with spark sequences measured under control conditions: (1) β-adrenergic stimulation with isoproterenol accelerated spark amplitude recovery and decreased spark-to-spark delays; (2) activating protein kinase A (PKA) with forskolin accelerated amplitude recovery but did not affect spark-to-spark delays; (3) inhibiting PKA with H89 retarded amplitude recovery and increased spark- to-spark delays; (4) preventing phosphorylation of the RyR at serine 2808 with a knock-in mouse prevented the decrease in spark-to-spark delays seen with β-adrenergic stimulation; (5) inhibiting either PKA or Ca2+/calmodulin-dependent protein kinase II (CaMKII) during β-adrenergic stimulation prevented the decrease in spark-to-spark delays seen) without inhibition. The results suggest that activation of either PKA or CaMKII is sufficient to speed SR refilling, but activation of both kinases appears necessary to observe increased RyR sensitivity. The data provide novel insight into β-adrenergic regulation of Ca2+ release refractoriness in mouse myocytes.
Resumo:
In Spinal Muscular Atrophy (SMA), the SMN1 gene is deleted or inactivated. Because of a splicing problem, the second copy gene, SMN2, generates insufficient amounts of functional SMN protein, leading to the death of spinal cord motoneurons. For a "severe" mouse SMA model (Smn -/-, hSMN2 +/+; with affected pups dying at 5-7 days), which most closely mimicks the genetic set-up in human SMA patients, we characterise SMA-related ultrastructural changes in neuromuscular junctions (NMJs) of two striated muscles with discrete functions. In the diaphragm, but not the soleus muscle of 4-days old SMA mice, mitochondria on both sides of the NMJs degenerate, and perisynaptic Schwann cells as well as endoneurial fibroblasts show striking changes in morphology. Importantly, NMJs of SMA mice in which a modified U7 snRNA corrects SMN2 splicing and delays or prevents SMA symptoms are normal. This ultrastructural study reveals novel features of NMJ alterations - in particular the involvement of perisynaptic Schwann cells - that may be relevant for human SMA pathogenesis.
Resumo:
Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.
Resumo:
Repetitive proteins (RP) of Trypanosoma cruzi are highly present in the parasite and are strongly recognized by sera from Chagas' disease patients. Flagelar Repetitive Antigen (FRA), which is expressed in all steps of the parasite life cycle, is the RP that displays the greatest number of aminoacids per repeat and has been indicated as one of the most suitable candidate for diagnostic test because of its high performance in immunoassays. Here we analyzed the influence of the number of repeats on the immunogenic and antigenic properties of the antigen. Recombinant proteins containing one, two, and four tandem repeats of FRA (FRA1, FRA2, and FRA4, respectively) were obtained and the immune response induced by an equal amount of repeats was evaluated in a mouse model. The reactivity of specific antibodies present in sera from patients naturally infected with T. cruzi was also assessed against FRA1, FRA2, and FRA4 proteins, and the relative avidity was analyzed. We determined that the number of repeats did not increase the humoral response against the antigen and this result was reproduced when the repeated motifs were alone or fused to a non-repetitive protein. By contrast, the binding affinity of specific human antibodies increases with the number of repeated motifs in FRA antigen. We then concluded that the high ability of FRA to be recognized by specific antibodies from infected individuals is mainly due to a favorable polyvalent interaction between the antigen and the antibodies. In accordance with experimental results, a 3D model was proposed and B epitope in FRA1, FRA2, and FRA4 were predicted.
Resumo:
The Nef protein of HIV-1 is important for AIDS pathogenesis, but it is not targeted by current antiviral strategies. Here, we describe a single-domain antibody (sdAb) that binds to HIV-1 Nef with a high affinity (K(d) = 2 × 10(-9)M) and inhibited critical biologic activities of Nef both in vitro and in vivo. First, it interfered with the CD4 down-regulation activity of a broad panel of nef alleles through inhibition of the Nef effects on CD4 internalization from the cell surface. Second, it was able to interfere with the association of Nef with the cellular p21-activated kinase 2 as well as with the resulting inhibitory effect of Nef on actin remodeling. Third, it counteracted the Nef-dependent enhancement of virion infectivity and inhibited the positive effect of Nef on virus replication in peripheral blood mononuclear cells. Fourth, anti-Nef sdAb rescued Nef-mediated thymic CD4(+) T-cell maturation defects and peripheral CD4(+) T-cell activation in the CD4C/HIV-1(Nef) transgenic mouse model. Because all these Nef functions have been implicated in Nef effects on pathogenesis, this anti-Nef sdAb may represent an efficient tool to elucidate the molecular functions of Nef in the virus life cycle and could now help to develop new strategies for the control of AIDS.
Resumo:
In order to achieve host cell entry, the apicomplexan parasite Neospora caninum relies on the contents of distinct organelles, named micronemes, rhoptries and dense granules, which are secreted at defined timepoints during and after host cell entry. It was shown previously that a vaccine composed of a mixture of three recombinant antigens, corresponding to the two microneme antigens NcMIC1 and NcMIC3 and the rhoptry protein NcROP2, prevented disease and limited cerebral infection and transplacental transmission in mice. In this study, we selected predicted immunogenic domains of each of these proteins and created four different chimeric antigens, with the respective domains incorporated into these chimers in different orders. Following vaccination, mice were challenged intraperitoneally with 2 × 10(6)N. caninum tachzyoites and were then carefully monitored for clinical symptoms during 4 weeks post-infection. Of the four chimeric antigens, only recNcMIC3-1-R provided complete protection against disease with 100% survivors, compared to 40-80% of survivors in the other groups. Serology did not show any clear differences in total IgG, IgG1 and IgG2a levels between the different treatment groups. Vaccination with all four chimeric variants generated an IL-4 biased cytokine expression, which then shifted to an IFN-γ-dominated response following experimental infection. Sera of recNcMIC3-1-R vaccinated mice reacted with each individual recombinant antigen, as well as with three distinct bands in Neospora extracts with similar Mr as NcMIC1, NcMIC3 and NcROP2, and exhibited distinct apical labeling in tachyzoites. These results suggest that recNcMIC3-1-R is an interesting chimeric vaccine candidate and should be followed up in subsequent studies in a fetal infection model.
Resumo:
The major route of transmission of Neospora caninum in cattle is transplacentally from an infected cow to its progeny. Therefore, a vaccine should be able to prevent both the horizontal transmission from contaminated food or water and the vertical transmission. We have previously shown that a chimeric vaccine composed of predicted immunogenic epitopes of NcMIC3, NcMIC1 and NcROP2 (recNcMIC3-1-R) significantly reduced the cerebral infection in BALB/c mice. In this study, mice were first vaccinated, then mated and pregnant mice were challenged with 2×10(6)N. caninum tachyzoites at day 7-9 of pregnancy. Partial protection was only observed in the mice vaccinated with a tachyzoite crude protein extract but no protection against vertical transmission or cerebral infection in the dams was observed in the group vaccinated with recNcMIC3-1-R. Serological and cytokine analysis showed an overall lower cytokine level in sera associated with a dominant IL-4 expression and high IgG1 titers. Thus, the Th2-type immune response observed in the pregnant mice was not protective against experimental neosporosis, in contrary to the mixed Th1-/Th2-type immune response observed in the non-pregnant mouse model. These results demonstrate that the immunomodulation that occurs during pregnancy was not favorable for the protection against N. caninum infection conferred by vaccination with recNcMIC3-1-R.
Resumo:
With the advent of high through-put sequencing (HTS), the emerging science of metagenomics is transforming our understanding of the relationships of microbial communities with their environments. While metagenomics aims to catalogue the genes present in a sample through assessing which genes are actively expressed, metatranscriptomics can provide a mechanistic understanding of community inter-relationships. To achieve these goals, several challenges need to be addressed from sample preparation to sequence processing, statistical analysis and functional annotation. Here we use an inbred non-obese diabetic (NOD) mouse model in which germ-free animals were colonized with a defined mixture of eight commensal bacteria, to explore methods of RNA extraction and to develop a pipeline for the generation and analysis of metatranscriptomic data. Applying the Illumina HTS platform, we sequenced 12 NOD cecal samples prepared using multiple RNA-extraction protocols. The absence of a complete set of reference genomes necessitated a peptide-based search strategy. Up to 16% of sequence reads could be matched to a known bacterial gene. Phylogenetic analysis of the mapped ORFs revealed a distribution consistent with ribosomal RNA, the majority from Bacteroides or Clostridium species. To place these HTS data within a systems context, we mapped the relative abundance of corresponding Escherichia coli homologs onto metabolic and protein-protein interaction networks. These maps identified bacterial processes with components that were well-represented in the datasets. In summary this study highlights the potential of exploiting the economy of HTS platforms for metatranscriptomics.
Resumo:
We have used a recombinant mouse pre-B cell line (TonB210.1, expressing Bcr/Abl under the control of an inducible promoter) and several human leukemia cell lines to study the effect of high tyrosine kinase activity on G protein-coupled receptor (GPCR) agonist-stimulated cellular Ca(2+) release and store-operated Ca(2+) entry (SOCE). After induction of Bcr/Abl expression, GPCR-linked SOCE increased. The effect was reverted in the presence of the specific Abl inhibitor imatinib (1microM) and the Src inhibitor PP2 (10microM). In leukemic cell lines constitutively expressing high tyrosine kinase activity, Ca(2+) transients were reduced by imatinib and/or PP2. Ca(2+) transients were enhanced by specific inhibitors of PKC subtypes and this effect was amplified by tyrosine kinase inhibition in Bcr/Abl expressing TonB210.1 and K562 cells. Under all conditions Ca(2+) transients were essentially blocked by the PKC activator PMA. In Bcr/Abl expressing (but not in native) TonB210.1 cells, tyrosine kinase inhibitors enhanced PKCalpha catalytic activity and PKCalpha co-immunoprecipitated with Bcr/Abl. Unlike native TonB210.1 cells, Bcr/Abl expressing cells showed a high rate of cell death if Ca(2+) influx was reduced by complexing extracellular Ca(2+) with BAPTA. Our data suggest that tonic inhibition of PKC represents a mechanism by which high tyrosine kinase activity can enhance cellular Ca(2+) transients and thus exert profound effects on the proliferation, apoptosis and chemotaxis of leukemic cells.