21 resultados para Diels-Alder adduct
Resumo:
Recognition of drugs by immune cells is usually explained by the hapten model, which states that endogenous metabolites bind irreversibly to protein to stimulate immune cells. Synthetic metabolites interact directly with protein-generating antigenic determinants for T cells; however, experimental evidence relating intracellular metabolism in immune cells and the generation of physiologically relevant Ags to functional immune responses is lacking. The aim of this study was to develop an integrated approach using animal and human experimental systems to characterize sulfamethoxazole (SMX) metabolism-derived antigenic protein adduct formation in immune cells and define the relationship among adduct formation, cell death, costimulatory signaling, and stimulation of a T cell response. Formation of SMX-derived adducts in APCs was dose and time dependent, detectable at nontoxic concentrations, and dependent on drug-metabolizing enzyme activity. Adduct formation above a threshold induced necrotic cell death, dendritic cell costimulatory molecule expression, and cytokine secretion. APCs cultured with SMX for 16 h, the time needed for drug metabolism, stimulated T cells from sensitized mice and lymphocytes and T cell clones from allergic patients. Enzyme inhibition decreased SMX-derived protein adduct formation and the T cell response. Dendritic cells cultured with SMX and adoptively transferred to recipient mice initiated an immune response; however, T cells were stimulated with adducts derived from SMX metabolism in APCs, not the parent drug. This study shows that APCs metabolize SMX; subsequent protein binding generates a functional T cell Ag. Adduct formation above a threshold stimulates cell death, which provides a maturation signal for dendritic cells.
Resumo:
The spatio-temporal control of gene expression is fundamental to elucidate cell proliferation and deregulation phenomena in living systems. Novel approaches based on light-sensitive multiprotein complexes have recently been devised, showing promising perspectives for the noninvasive and reversible modulation of the DNA-transcriptional activity in vivo. This has lately been demonstrated in a striking way through the generation of the artificial protein construct light-oxygen-voltage (LOV)-tryptophan-activated protein (TAP), in which the LOV-2-Jα photoswitch of phototropin1 from Avena sativa (AsLOV2-Jα) has been ligated to the tryptophan-repressor (TrpR) protein from Escherichia coli. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their functioning as opto-genetical tools is still in its infancy. Here, we elucidate the early stages of the light-induced regulatory mechanism of LOV-TAP at the molecular level, using the noninvasive molecular dynamics simulation technique. More specifically, we find that Cys450-FMN-adduct formation in the AsLOV2-Jα-binding pocket after photoexcitation induces the cleavage of the peripheral Jα-helix from the LOV core, causing a change of its polarity and electrostatic attraction of the photoswitch onto the DNA surface. This goes along with the flexibilization through unfolding of a hairpin-like helix-loop-helix region interlinking the AsLOV2-Jα- and TrpR-domains, ultimately enabling the condensation of LOV-TAP onto the DNA surface. By contrast, in the dark state the AsLOV2-Jα photoswitch remains inactive and exerts a repulsive electrostatic force on the DNA surface. This leads to a distortion of the hairpin region, which finally relieves its tension by causing the disruption of LOV-TAP from the DNA.
Resumo:
In modern life- and medical-sciences major efforts are currently concentrated on creating artificial photoenzymes, consisting of light- oxygen-voltage-sensitive (LOV) domains fused to a target enzyme. Such protein constructs possess great potential for controlling the cell metabolism as well as gene function upon light stimulus. This has recently been impressively demonstrated by designing a novel artificial fusion protein, connecting the AsLOV2-Jα-photosensor from Avena sativa with the Rac1-GTPase (AsLOV2-Jα-Rac1), and by using it, to control the motility of cancer cells from the HeLa-line. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their signaling pathway after photoexcitation is still in its infancy. Here, we show through computer simulations of the AsLOV2-Jα-Rac1-photoenzyme that the early processes after formation of the Cys450-FMN-adduct involve the breakage of a H-bond between the carbonyl oxygen FMN-C4O and the amino group of Gln513, followed by a rotational reorientation of its sidechain. This initial event is followed by successive events including β-sheet tightening and transmission of torsional stress along the Iβ-sheet, which leads to the disruption of the Jα-helix from the N-terminal end. Finally, this process triggers the detachment of the AsLOV2-Jα-photosensor from the Rac1-GTPase, ultimately enabling the activation of Rac1 via binding of the effector protein PAK1.
Resumo:
PhIP carcinogenesis is initiated by N(2)-hydroxylation, mediated by several cytochromes P450, including CYP1A1. However, the role of CYP1A1 in PhIP metabolic activation in vivo is unclear. In this study, Cyp1a1-null and wild-type (WT) mice were used to investigate the potential role of CYP1A1 in PhIP metabolic activation in vivo. PhIP N(2)-hydroxylation was actively catalyzed by lung homogenates of WT mice, at a rate of 14.9 +/- 5.0 pmol/min/g tissue, but < 1 pmol/min/g tissue in stomach and small intestine, and almost undetectable in mammary gland and colon. PhIP N(2)-hydroxylation catalyzed by lung homogenates of Cyp1a1-null mice was approximately 10-fold lower than that of WT mice. In contrast, PhIP N(2)-hydroxylation activity in lung homogenates of Cyp1a2-null versus WT mice was not decreased. Pretreatment with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased lung Cyp1a1 mRNA and lung homogenate PhIP N(2)-hydroxylase activity approximately 50-fold in WT mice, where the activity was substantially inhibited (70%) by monoclonal antibodies against CYP1A1. In vivo, 30 min after oral treatment with PhIP, PhIP levels in lung were similar to those in liver. After a single dose of 0.1 mg/kg [(14)C]PhIP, lung PhIP-DNA adduct levels in Cyp1a1-null mice, but not in Cyp1a2-null mice, were significantly lower (P=0.0028) than in WT mice. These results reveal that mouse lung has basal and inducible PhIP N(2)-hydroxylase activity predominantly catalyzed by CYP1A1. Because of the high inducibility of human CYP1A1, especially in cigarette smokers, the role of lung CYP1A1 in PhIP carcinogenesis should be considered.
Resumo:
OBJECTIVES: There is increasing research on posttraumatic stress (PS) 4-6 weeks and 3 months postpartum, but, there are no data on acute stress reactions (ASR) in the first 3 weeks postpartum, i.e. the potential precursors of PS. However, ASR may have long-term effects, e.g., on a subsequent pregnancy without having manifested as PS in the meantime. We propose: (i) to describe the patterns of ASR after childbirth, (ii) to explore differences between women with normal and traumatogenic ASR, and (iii) to provide data on the early detection of traumatogenic ASR 2 and 3 weeks postpartum. STUDY DESIGN: Intra-event variables (relationship with caregivers, overall birth experience, and dissociative experiences, as well as obstetric variables) were assessed 48-96h. postpartum, as were ASR (by means of the Impact-of-Event Scale IES) in weeks 1, 2, and 3 postpartum. According to research on PS the upper 33%-range of ASR in weeks 2 and 3 was defined as 'traumatogenic'. RESULTS: Normal ASR in week 1 are at a level which in non-obstetric trauma-situations is considered as the upper range of low stress or lower range of medium distress. ASR decline constantly from week 1 to week 3. However, high ASR in week 1 do not drop faster than do low ones, thus indicating a prolonged stress reaction in women with high ASR in week 1. Low ASR (IES-scores <10) and high ASR (IES-scores >20) in week 1 are highly predictive for normal ASR, and traumatogenic ASR in weeks 2 and 3, respectively. Medium ASR (IES-scores 10-20) in week 1 are of uncertain predictive value for stress reactions in weeks 2 and 3 and have to be re-assessed at that time. CONCLUSIONS: Clinical screening for ASR appears to be helpful in detecting women with a compromised ability to process childbirth-related stress. The association between ASR and long-term development should be further explored.
Resumo:
Most studies on post-traumatic stress symptoms after childbirth have focused on prevalence of and looked at etiological factors and predictors. While most authors agree that around 1.5% of the women develop post-traumatic stress disorder (PTSD) and significantly more present with post-traumatic stress symptoms, the studies still lack a proper diagnosis using diagnostic interviews to validate the enhanced stress scores found in questionnaires. Also, some relevant predicting factors such as pre-existing psychopathology and dissociation during labor have not been investigated so far. Mostly, however, research on counseling strategies for women with post-traumatic symptoms after childbirth has been neglected. While most women remain in a mother-child unit during the first days after birth, there is a unique opportunity to systematically assess birth experience in this setting and screen for women at risk for developing trauma symptoms. This article presents a multilevel counseling approach including postnatal counseling and counseling in a subsequent pregnancy.
Resumo:
Gamma-tocopherol (gammaT) complements alpha-tocopherol (alphaT) by trapping reactive nitrogen oxides to form a stable adduct, 5-nitro-gammaT [Christen et al., PNAS 94:3217-3222; 1997]. This observation led to the current investigation in which we studied the effects of gammaT supplementation on plasma and tissue vitamin C, vitamin E, and protein nitration before and after zymosan-induced acute peritonitis. Male Fischer 344 rats were fed for 4 weeks with either a normal chow diet with basal 32 mg alphaT/kg, or the same diet supplemented with approximately 90 mg d-gammaT/kg. Supplementation resulted in significantly higher levels of gammaT in plasma, liver, and kidney of control animals without affecting alphaT, total alphaT+gammaT or vitamin C. Intraperitoneal injection of zymosan caused a marked increase in 3-nitrotyrosine and a profound decline in vitamin C in all tissues examined. Supplementation with gammaT significantly inhibited protein nitration and ascorbate oxidation in the kidney, as indicated by the 29% and 56% reduction of kidney 3-nitrotyrosine and dehydroascorbate, respectively. Supplementation significantly attenuated inflammation-induced loss of vitamin C in the plasma (38%) and kidney (20%). Zymosan-treated animals had significantly higher plasma and tissue gammaT than nontreated pair-fed controls, and the elevation of gammaT was strongly accentuated by the supplementation. In contrast, alphaT did not significantly change in response to zymosan treatment. In untreated control animals, gammaT supplementation lowered basal levels of 3-nitrotyrosine in the kidney and buffered the starvation-induced changes in vitamin C in all tissues examined. Our study provides the first in vivo evidence that in rats with high basal amounts of alphaT, a moderate gammaT supplementation attenuates inflammation-mediated damage, and spares vitamin C during starvation-induced stress without affecting alphaT.
Resumo:
Reactive nitrogen oxide species (RNOS) have been implicated as effector molecules in inflammatory diseases. There is emerging evidence that gamma-tocopherol (gammaT), the major form of vitamin E in the North American diet, may play an important role in these diseases. GammaT scavenges RNOS such as peroxynitrite by forming a stable adduct, 5-nitro-gammaT (NGT). Here we describe a convenient HPLC method for the simultaneous determination of NGT, alphaT, and gammaT in blood plasma and other tissues. Coulometric detection of NGT separated on a deactivated reversed-phase column was linear over a wide range of concentrations and highly sensitive (approximately 10 fmol detection limit). NGT extracted from blood plasma of 15-week-old Fischer 344 rats was in the low nM range, representing approximately 4% of gammaT. Twenty-four h after intraperitoneal injection of zymosan, plasma NGT levels were 2-fold higher compared to fasted control animals when adjusted to gammaT or corrected for total neutral lipids, while alpha- and gammaT levels remained unchanged. These results demonstrate that nitration of gammaT is increased under inflammatory conditions and highlight the importance of RNOS reactions in the lipid phase. The present HPLC method should be helpful in clarifying the precise physiological role of gammaT.
Resumo:
Malaria parasite detoxifies free haem, released as a result of haemoglobin digestion, by converting it into an stable, crystalline, black brown pigment known as 'malaria pigment' or 'haemozoin'. Earlier studies have demonstrated the involvement of a parasite-specific enzyme 'haem polymerase' in the formation of haemozoin. However, recently it has been proposed that the polymerization of haem may be a spontaneous process that could take place by incubation of haematin with carboxylic acids (pH 4.2-5.0) even without presence of any parasitic or biological component (FEBS Letters, 352, 54-57 (1994). Here we report that no spontaneous haem polymerization occurs at physiological conditions and the product described in the study mentioned above is not haemozoin/beta-haematin (haem polymer) as characterized by us on the basis of solubility characteristics and thin layer chromatography. The infra-red spectroscopic analysis of the product formed though exhibits the bands corresponding to formation of iron-carboxylate bond, similar to that in haemozoin/beta-haematin, but was identified as haem-acid adduct. Thus polymerization of haem may not occur spontaneously under the reaction conditions corresponding to food vacuoles of the malarial parasite, the physiological site of haemozoin formation.
Modelling the effects of land use and climate changes on hydrology in the Ursern Valley, Switzerland
Resumo:
While many studies have been conducted in mountainous catchments to examine the impact of climate change on hydrology, the interactions between climate changes and land use components have largely unknown impacts on hydrology in alpine regions. They need to be given special attention in order to devise possible strategies concerning general development in these regions. Thus, the main aim was to examine the impact of land use (i.e. bushland expansion) and climate changes (i.e. increase of temperature) on hydrology by model simulations. For this purpose, the physically based WaSiM-ETH model was applied to the catchment of Ursern Valley in the central Alps (191 km2) over the period of 1983−2005. Modelling results showed that the reduction of the mean monthly discharge during the summer period is due primarily to the retreat of snow discharge in time and secondarily to the reduction in the glacier surface area together with its retreat in time, rather than the increase in the evapotranspiration due to the expansion of the “green alder” on the expense of grassland. The significant decrease in summer discharge during July, August and September shows a change in the regime from b-glacio-nival to nivo-glacial. These changes are confirmed by the modeling results that attest to a temporal shift in snowmelt and glacier discharge towards earlier in the year: March, April and May for snowmelt and May and June for glacier discharge. It is expected that the yearly total discharge due to the land use changes will be reduced by 0.6% in the near future, whereas, it will be reduced by about 5% if climate change is also taken into account. Copyright © 2013 John Wiley & Sons, Ltd.
Resumo:
The recrystallization behavior of Cu films electrodeposited under oscillatory conditions in the presence of plating additives was studied by means of secondary ion mass spectrometry (SIMS) and focused ion beam analysis. When combined with bis-(sodium-sulfopropyl)-disulfide (SPS), Imep levelers (polymerizates of imidazole and epichlorohydrin) show characteristic oscillations in the galvanostatic potential/time transient measurements. These are related to the periodic degradation and restoration of the active leveler ensemble at the interface. The leveler action relies on adduct formation between the Imep and MPS (mercaptopropane sulfonic acid)-stabilized CuI complexes that appear as intermediates of the copper deposition when SPS is present in the electrolyte. SIMS depth profiling proves that additives are incorporated into the growing film preferentially under transient conditions during the structural breakdown of the leveler ensemble and its subsequent restoration. In contrast, Cu films electrodeposited in the presence of a structurally intact Imep–CuI–MPS ensemble remain largely contamination free.