46 resultados para Diatoms, Fossil.
Resumo:
The development of Soppensee (Central Switzerland, 596 m a.s.l.) has been reconstructed using algal remains such as diatoms, chlorophytes and fossil pigments, as well as the pollen and spores of macrophytes. Sediment accumulation in Soppensee began at the end of the last glacial period, approximately 15,000 yrs ago. During the Oldest Dryas biozone (> 12,700 radiocarbon yrs B.P.) the lake had low primary productivity. After reforestation with birch and later pine, around 12,700 B.P., phases of summer anoxia occurred in the lake. These anoxic conditions were most probably caused by additional carbon input from the catchment, as well as longer phases of stratification due to reduced wind exposure caused by the sheltering effect of increased tree cover. From the Younger Dryas biozone (10,800 to 10,000 radiocarbon yrs B.P.) onwards, Soppensee became meromictic for several millennia.
Resumo:
Diatom analyses with an annual resolution were carried out on varves of the hypertrophic Baldeggersee (Central Swiss Plateau) for the timespan ad 1885 to 1993. They reveal seven major changes in the dominant planktonic diatoms. As a result of progressive nutrient enrichment, Baldeggersee changed in the 1910s from a Cyclotella to a Tabellaria fenestrata dominated assemblage, and eventually in the 1950s to a Stephanodiscus parvus dominated diatom assemblage. The timing and direction of diatom-assemblage changes in the varved sediment compare well with sedimentological and limnological observations. Partitioning of the variance in the diatom data revealed that TP is a stronger explanatory variable than temperature for these changes. A diatom-inferred total phosphorus (TP) reconstruction indicates three major steps in eutrophication, occurring at 1909, the mid-1950s and the mid-1970s. Comparison with TP measurements in the water column demonstrates that the diatom-TP inference model used is able to hindcast past TP concentrations reliably. The major steps in eutrophication led to decreases in diatom diversity and also resulted in a progressive increase of calcite grain-size. The lake restoration programme established since 1982 shows no direct impact on the composition of the diatom assemblages. However, the decrease in phosphorus loads since the mid-1970s is reflected in the diatom assemblages and in decreasing diatom-inferred TP concentrations.
Resumo:
We present results from the international field campaign DAURE (Detn. of the sources of atm. Aerosols in Urban and Rural Environments in the Western Mediterranean), with the objective of apportioning the sources of fine carbonaceous aerosols. Submicron fine particulate matter (PM1) samples were collected during Feb.-March 2009 and July 2009 at an urban background site in Barcelona (BCN) and at a forested regional background site in Montseny (MSY). We present radiocarbon (14C) anal. for elemental and org. carbon (EC and OC) and source apportionment for these data. We combine the results with those from component anal. of aerosol mass spectrometer (AMS) measurements, and compare to levoglucosan-based ests. of biomass burning OC, source apportionment of filter data with inorg. compn. + EC + OC, submicron bulk potassium (K) concns., and gaseous acetonitrile concns. At BCN, 87 % and 91 % of the EC on av., in winter and summer, resp., had a fossil origin, whereas at MSY these fractions were 66 % and 79 %. The contribution of fossil sources to org. carbon (OC) at BCN was 40 % and 48 %, in winter and summer, resp., and 31 % and 25 % at MSY. The combination of results obtained using the 14C technique, AMS data, and the correlations between fossil OC and fossil EC imply that the fossil OC at Barcelona is ∼47 % primary whereas at MSY the fossil OC is mainly secondary (∼85 %). Day-to-day variation in total carbonaceous aerosol loading and the relative contributions of different sources predominantly depended on the meteorol. transport conditions. The estd. biogenic secondary OC at MSY only increased by ∼40 % compared to the order-of-magnitude increase obsd. for biogenic volatile org. compds. (VOCs) between winter and summer, which highlights the uncertainties in the estn. of that component. Biomass burning contributions estd. using the 14C technique ranged from similar to slightly higher than when estd. using other techniques, and the different estns. were highly or moderately correlated. Differences can be explained by the contribution of secondary org. matter (not included in the primary biomass burning source ests.), and/or by an over-estn. of the biomass burning OC contribution by the 14C technique if the estd. biomass burning EC/OC ratio used for the calcns. is too high for this region. Acetonitrile concns. correlate well with the biomass burning EC detd. by 14C. K is a noisy tracer for biomass burning. [on SciFinder(R)]