26 resultados para Death. Life-death Double


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is not surprising that the demise of a cell is a complex well-controlled process. Apoptosis, the first genetically programmed death process identified, has been extensively studied and its contribution to the pathogenesis of disease well documented. Yet, apoptosis does not function alone to determine a cell's fate. More recently, autophagy, a process in which de novo-formed membrane-enclosed vesicles engulf and consume cellular components, has been shown to engage in a complex interplay with apoptosis. In some cellular settings, it can serve as a cell survival pathway, suppressing apoptosis, and in others, it can lead to death itself, either in collaboration with apoptosis or as a back-up mechanism when the former is defective. The molecular regulators of both pathways are inter-connected; numerous death stimuli are capable of activating either pathway, and both pathways share several genes that are critical for their respective execution. The cross-talk between apoptosis and autophagy is therefore quite complex, and sometimes contradictory, but surely critical to the overall fate of the cell. Furthermore, the cross-talk is a key factor in the outcome of death-related pathologies such as cancer, its development and treatment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Autophagy is a conserved proteolytic mechanism that degrades cytoplasmic material including cell organelles. Although the importance of autophagy for cell homeostasis and survival has long been appreciated, our understanding of how autophagy is regulated at a molecular level just recently evolved. The importance of autophagy for the quality control of proteins is underscored by the fact that many neurodegenerative and myodegenerative diseases are characterized by an increased but still insufficient autophagic activity. Similarly, if the cellular stress, leading to deoxyribonucleic acid (DNA) damage, mitochondrial damage and/or damaged proteins, does not result in sufficient autophagic repair mechanisms, cells seem to be prone to transform into tumour cells. Therefore, autophagy has multiple roles to play in the causation and prevention of human diseases.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Protozoan parasites of the genus Plasmodium are the causative agents of malaria. Despite more than 100 years of research, the complex life cycle of the parasite still bears many surprises and it is safe to say that understanding the biology of the pathogen will keep scientists busy for many years to come. Malaria research has mainly concentrated on the pathological blood stage of Plasmodium parasites, leaving us with many questions concerning parasite development within the mosquito and during the exo-erythrocytic stage in the vertebrate host. After the discovery of the Plasmodium liver stage in the middle of the last century, it remained understudied for many years but the realization that it represents a promising target for vaccination approaches has brought it back into focus. The last decade saw many new and exciting discoveries concerning the exo-erythrocytic stage and in this review we will discuss the highlights of the latest developments in the field.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Paracetamol (acetaminophen, APAP) is a universally used analgesic and antipyretic agent. Considered safe at therapeutic doses, overdoses cause acute liver damage characterized by centrilobular hepatic necrosis. One of the major clinical problems of paracetamol-induced liver disease is the development of hemorrhagic alterations. Although hepatocytes represent the main target of the cytotoxic effect of paracetamol overdose, perturbations within the endothelium involving morphological changes of liver sinusoidal endothelial cells (LSECs) have also been described in paracetamol-induced liver disease. Recently, we have shown that paracetamol-induced liver damage is synergistically enhanced by the TRAIL signaling pathway. As LSECs are constantly exposed to activated immune cells expressing death ligands, including TRAIL, we investigated the effect of TRAIL on paracetamol-induced LSEC death. We here demonstrate for the first time that TRAIL strongly enhances paracetamol-mediated LSEC death with typical features of apoptosis. Inhibition of caspases using specific inhibitors resulted in a strong reduction of cell death. TRAIL appears to enhance paracetamol-induced LSEC death via the activation of the pro-apoptotic BH3-only proteins Bid and Bim, which initiate the mitochondrial apoptotic pathway. Taken together this study shows that the liver endothelial layer, mainly LSECs, represent a direct target of the cytotoxic effect of paracetamol and that activation of TRAIL receptor synergistically enhances paracetamol-induced LSEC death via the mitochondrial apoptotic pathway. TRAIL-mediated acceleration of paracetamol-induced cell death may thus contribute to the pathogenesis of paracetamol-induced liver damage.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A 21-year-old previously-well woman who was undergoing medical investigations for problems with balance and suspected multiple sclerosis, developed a headache and breathing difficulties, and died suddenly and unexpected at home. The autopsy was unremarkable except for pulmonary and cerebral oedema. However, subsequent microscopy of the brain revealed characteristic features of Leigh syndrome with multifocal areas of astrogliosis, capillary proliferation, and parenchymal vacuolation. While Leigh syndrome is more commonly diagnosed in infancy, manifestations may occur throughout early life into adulthood. Sudden and unexpected death is a rare presentation that may be associated with cerebral necrosis and oedema. An awareness of the variable manifestations of Leigh syndrome is necessary in forensic practice as not all cases will present in a typical manner and sudden death may occur before a diagnosis has been established. The heritable nature of this condition makes accuracy of diagnosis essential.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Due to the decomposition of biological material, hydrogen sulphide (H(2)S) is produced. In low concentrations, the well-known smell of "rotten eggs" is associated with H(2)S. In higher concentrations, H(2)S is an odourless and colourless gas that may cause rapid loss of consciousness, neurological and respiratory depression and imminent death-"... like a stroke of lightening". Hydrogen sulphide poisoning is an un-common incident that is often associated with colleague fatalities. In this study, 4 fatal accidents with 10 deceased victims are reported and the morphological and phenomenological aspects are presented. In these cases, the morphological findings, namely, discolouration of the livores, pulmonary pathologies and sub-mucosal or sub-serosal congestion bleeding were found in nearly all cases. Also the impending threat for colleagues, first aid helpers and professional rescue teams is demonstrated. The suspicion of a fatal H(2)S intoxication should be based on a precise scene analysis with respect to the possibility of life-threatening H(2)S intoxication for the helpers, the typical scent of rotten eggs, which may be noted on the corpses and the abovementioned morphological findings. The diagnosis should be confirmed by a qualitative and, if possible, quantitative analysis of H(2)S.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Apoptosis is essential to eliminate secretory epithelial cells during the involution of the mammary gland. The environmental regulation of this process is however, poorly understood. This study tested the effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells) on mammary cells. Plastic pellets containing HAMLET were implanted into the fourth inguinal mammary gland of lactating mice for 3 days. Exposure of mammary tissue to HAMLET resulted in morphological changes typical for apoptosis and in a stimulation of caspase-3 activity in alveolar epithelial cells near the HAMLET pellets but not more distant to the pellet or in contralateral glands. The effect was specific for HAMLET and no effects were observed when mammary glands were exposed to native a-lactalbumin or fatty acid alone. HAMLET also induced cell death in vitro in a mouse mammary epithelial cell line. The results suggest that HAMLET can mediate apoptotic cell death in mammary gland tissue.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The family of Eph receptor tyrosine kinases and their membrane bound ligands, the ephrins, are involved in a wide variety of morphogenic processes during embryonic development and adult tissue homeostasis. Receptor-ligand interaction requires direct cell-cell contact and results in forward and reverse signaling originating from the receptor and ligand, respectively. We have previously shown that EphB4 and ephrinB2 are differentially expressed during the development of the adult mammary parenchyma. Overexpression of EphB4 in the mammary epithelium of transgenic mice leads to perturbations in mammary epithelial morphology, motility and growth. To investigate the role of ephrinB2 signaling in mammary gland biology, we have established transgenic mice exhibiting conditional ephrinB2 knockout in the mammary epithelium. In homozygote double transgenic CreLox mice, specific knockout of ephrinB2 occurred in the mammary epithelium during the first pregnancy-lactating period. Abolishing ephrinB2 function led to severe interference with the architecture and functioning of the mammary gland at lactation. The morphology of the transgenic lactating glands resembled that of involuting controls, with decreased epithelial cell number and collapsed lobulo-alveolar structures. Accordingly, massive epithelial cell death and expression of involution-specific genes were observed. Interestingly, in parallel to cell death, significant cell proliferation was apparent, suggestive of tissue regeneration.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Urry begins his 2007 book, Mobilities, by throwing some quite stunning statistics at his readers: in 2010, there were one billion legal international arrivals at ports and airports; in 1800 people in the US travelled on average 50 metres per day, today it is 50 kilometres per day; 8.7% of world employment is in tourism; and, at any one time, there are 360,000 passengers in flight above the United States (2007: 3-4). But very many of these mobilities for the individuals concerned are or have become rather unexceptional – a flight to a holiday in Majorca or Florida, a journey on a crowded commuter train into Madrid or Tokyo, a cross-Channel ferry to Calais in France to pick up some cheap wine and a camembert. Whilst much of the theoretically influential dialectological literature on mobility reports on long-distance, often permanent, often dangerous migrations, I turn our attention here to the dialectological consequences of this unexceptional everyday movement. I will argue here that, just as more dramatic and long-distance mobilities can trigger linguistic change, so too can the much more mundane movements we engage in in everyday life. I demonstrate that the linguistic consequences of that contact are similar if not the same – perhaps less dramatic, perhaps involving the convergence of an initially less divergent array of variants – but typologically of the same ilk. And I demonstrate that because these mobilities have been long-term, intensive and ongoing, their consequences on the dialect landscape have been highly significant. Important to remember, however, is that these mobilities are socially stratified and unevenly distributed. As Wolff put it: “the suggestion of free and equal mobility is … a deception, since we don’t all have the same access to the road” (1993: 253).

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Recently it has been shown in rodent malaria models that immunisation with genetically attenuated Plasmodium parasites can confer sterile protection against challenge with virulent parasites. For the mass production of live attenuated Plasmodium parasites for vaccination, safety is a prerequisite. Knockout of a single gene is not sufficient for such a strategy since the parasite can likely compensate for such a genetic modification and a single surviving parasite is sufficient to kill an immunised individual. Parasites must therefore be at least double-attenuated when generating a safe vaccine strain. Genetic double-attenuation can be achieved by knocking out two essential genes or by combining a single gene knockout with the expression of a protein toxic for the parasite. We generated a double-attenuated Plasmodium berghei strain that is deficient in fatty acid synthesis by the knockout of the pdh-e1α gene, introducing a second attenuation by the liver stage-specific expression of the pore-forming bacterial toxin perfringolysin O. With this double genetically attenuated parasite strain, a superior attenuation was indeed achieved compared with single-attenuated strains that were either deficient in pyruvate dehydrogenase (PDH)-E1 or expressed perfringolysin O. In vivo, both single-attenuated strains resulted in breakthrough infections even if low to moderate doses of sporozoites (2,000-5,000) were administered. In contrast, the double genetically attenuated parasite strain, given at moderate doses of 5,000 sporozoites, did not result in blood stage infection and even when administered at 5- to 20-fold higher doses, only single and delayed breakthrough infections were observed. Prime booster immunisation with the double genetically attenuated parasite strain completely protected a susceptible mouse strain from malaria and even a single immunisation conferred protection in some cases and lead to a markedly delayed onset of blood stage infection in others. Importantly, premature rupture of the parasitophorous vacuole membrane by liver stage-specific perfringolysin O expression did not induce host cell death and soluble parasite proteins, which are released into the host cell cytoplasm, have the potential to be processed and presented via MHC class I molecules. This, in turn, might support immunological responses against Plasmodium-infected hepatocytes.