32 resultados para DXA
Resumo:
Areal bone mineral density (aBMD) at the distal tibia, measured at the epiphysis (T-EPI) and diaphysis (T-DIA), is predictive for fracture risk. Structural bone parameters evaluated at the distal tibia by high resolution peripheral quantitative computed tomography (HR-pQCT) displayed differences between healthy and fracture patients. With its simple geometry, T-DIA may allow investigating the correlation between bone structural parameter and bone strength.
Resumo:
Denosumab is an approved therapy for postmenopausal women with osteoporosis at high or increased risk for fracture. In the FREEDOM study, denosumab reduced fracture risk and increased bone mineral density (BMD). We report the spine and hip dual-energy X-ray absorptiometry (DXA) BMD responses from the overall study of 7808 women and from a substudy of 441 participants in which more extensive spine and hip assessments as well as additional skeletal sites were evaluated. Significant BMD improvements were observed as early as 1mo at the lumbar spine, total hip, and trochanter (all p<0.005 vs placebo and baseline). BMD increased progressively at the lumbar spine, total hip, femoral neck, trochanter, 1/3 radius, and total body from baseline to months 12, 24, and 36 (all p<0.005 vs placebo and baseline). BMD gains above the least significant change of more than 3% at 36 months were observed in 90% of denosumab-treated subjects at the lumbar spine and 74% at the total hip, and gains more than 6% occurred in 77% and 38%, respectively. In conclusion, denosumab treatment resulted in significant, early, and continued BMD increases at both trabecular and cortical sites throughout the skeleton over 36mo with important gains observed in most subjects.
Resumo:
The aim of this study was to evaluate the ability of dual energy X-rays absorptiometry (DXA) areal bone mineral density (aBMD) measured in different regions of the proximal part of the human femur for predicting the mechanical properties of matched proximal femora tested in two different loading configurations. 36 pairs of fresh frozen femora were DXA scanned and tested until failure in two loading configurations: a fall on the side or a one-legged standing. The ability of the DXA output from four different regions of the proximal femur in predicting the femoral mechanical properties was measured and compared for the two loading scenarios. The femoral neck DXA BMD was best correlated to the femoral ultimate force for both configurations and predicted significantly better femoral failure load (R2=0.80 vs. R2=0.66, P<0.05) when simulating a side than when simulating a standing configuration. Conversely, the work to failure was predicted similarly for both loading configurations (R2=0.54 vs. R2=0.53, P>0.05). Therefore, neck BMD should be considered as one of the key factors for discriminating femoral fracture risk in vivo. Moreover, the better predictive ability of neck BMD for femoral strength if tested in a fall compared to a one-legged stance configuration suggests that DXA's clinical relevance may not be as high for spontaneous femoral fractures than for fractures associated to a fall.
Resumo:
High-resolution quantitative computed tomography (HRQCT)-based analysis of spinal bone density and microstructure, finite element analysis (FEA), and DXA were used to investigate the vertebral bone status of men with glucocorticoid-induced osteoporosis (GIO). DXA of L1–L3 and total hip, QCT of L1–L3, and HRQCT of T12 were available for 73 men (54.6±14.0years) with GIO. Prevalent vertebral fracture status was evaluated on radiographs using a semi-quantitative (SQ) score (normal=0 to severe fracture=3), and the spinal deformity index (SDI) score (sum of SQ scores of T4 to L4 vertebrae). Thirty-one (42.4%) subjects had prevalent vertebral fractures. Cortical BMD (Ct.BMD) and thickness (Ct.Th), trabecular BMD (Tb.BMD), apparent trabecular bone volume fraction (app.BV/TV), and apparent trabecular separation (app.Tb.Sp) were analyzed by HRQCT. Stiffness and strength of T12 were computed by HRQCT-based nonlinear FEA for axial compression, anterior bending and axial torsion. In logistic regressions adjusted for age, glucocorticoid dose and osteoporosis treatment, Tb.BMD was most closely associated with vertebral fracture status (standardized odds ratio [sOR]: Tb.BMD T12: 4.05 [95% CI: 1.8–9.0], Tb.BMD L1–L3: 3.95 [1.8–8.9]). Strength divided by cross-sectional area for axial compression showed the most significant association with spine fracture status among FEA variables (2.56 [1.29–5.07]). SDI was best predicted by a microstructural model using Ct.Th and app.Tb.Sp (r2=0.57, p<0.001). Spinal or hip DXA measurements did not show significant associations with fracture status or severity. In this cross-sectional study of males with GIO, QCT, HRQCT-based measurements and FEA variables were superior to DXA in discriminating between patients of differing prevalent vertebral fracture status. A microstructural model combining aspects of cortical and trabecular bone reflected fracture severity most accurately.
Resumo:
BACKGROUND Areal bone mineral density is predictive for fracture risk. Microstructural bone parameters evaluated at the appendicular skeleton by high-resolution peripheral quantitative computed tomography (HR-pQCT) display differences between healthy patients and fracture patients. With the simple geometry of the cortex at the distal tibial diaphysis, a cortical index of the tibia combining material and mechanical properties correlated highly with bone strength ex vivo. The trabecular bone score derived from the scan of the lumbar spine by dual-energy X-ray absorptiometry (DXA) correlated ex vivo with the micro architectural parameters. It is unknown if these microstructural correlations could be made in healthy premenopausal women. METHODS Randomly selected women between 20-40 years of age were examined by DXA and HR-pQCT at the standard regions of interest and at customized sub regions to focus on cortical and trabecular parameters of strength separately. For cortical strength, at the distal tibia the volumetric cortical index was calculated directly from HR-pQCT and the areal cortical index was derived from the DXA scan using a Canny threshold-based tool. For trabecular strength, the trabecular bone score was calculated based on the DXA scan of the lumbar spine and was compared with the corresponding parameters derived from the HR-pQCT measurements at radius and tibia. RESULTS Seventy-two healthy women were included (average age 33.8 years, average BMI 23.2 kg/m(2)). The areal cortical index correlated highly with the volumetric cortical index at the distal tibia (R = 0.798). The trabecular bone score correlated moderately with the microstructural parameters of the trabecular bone. CONCLUSION This study in randomly selected premenopausal women demonstrated that microstructural parameters of the bone evaluated by HR-pQCT correlated with the DXA derived parameters of skeletal regions containing predominantly cortical or cancellous bone. Whether these indexes are suitable for better predictions of the fracture risk deserves further investigation.
Resumo:
A Swiss-specific FRAX model was developed. Patient profiles at increased probability of fracture beyond currently accepted reimbursement thresholds for bone mineral density (BMD) measurement by dual X-ray absorptiometry (DXA), and osteoporosis treatment were identified.
Resumo:
Recent studies have suggested that areal BMD (aBMD) measured by DXA is elevated in patients with DISH. We used peripheral QCT (pQCT) to assess volumetric BMD (vBMD) and bone geometry of the radius, tibia and the third metacarpal bone.
Resumo:
Osteoporosis is characterised by a progressive loss of bone mass and microarchitecture which leads to increased fracture risk. Some of the drugs available to date have shown reductions in vertebral and non-vertebral fracture risk. However, in the ageing population of industrialised countries, still more fractures happen today than are avoided, which highlights the large medical need for new treatment options, models, and strategies. Recent insights into bone biology, have led to a better understanding of bone cell functions and crosstalk between osteoblasts, osteoclasts, and osteocytes at the molecular level. In the future, the armamentarium against osteoporotic fractures will likely be enriched by (1.) new bone anabolic substances such as antibodies directed against the endogenous inhibitors of bone formation sclerostin and dickkopf-1, PTH and PTHrp analogues, and possibly calcilytics; (2.) new inhibitors of bone resorption such as cathepsin K inhibitors which may suppress osteoclast function without impairing osteoclast viability and thus maintain bone formation by preserving the osteoclast-osteoblast crosstalk, and denosumab, an already widely available antibody against RANKL which inhibits osteoclast formation, function, and survival; and (3.) new therapeutic strategies based on an extended understanding of the pathophysiology of osteoporosis which may include sequential therapies with two or more bone active substances aimed at optimising the management of bone capital acquired during adolescence and maintained during adulthood in terms of both quantity and quality. Finally, one of the future challenges will be to identify those patients and patient populations expected to benefit the most from a given drug therapy or regimen. The WHO fracture risk assessment tool FRAX® and improved access to bone mineral density measurements by DXA will play a key role in this regard.
Resumo:
In the first part of this methodological study eleven metacarpi of 9 skeletally normal horses were examined from 4 directions by dual energy x-ray absorptiometry (DXA). The differences between the dorsopalmar-palmarodorsal and lateromedial-mediolateral (opposite sites) bone mineral density (BMD) values were found to be nonsignificant. In the second part of the study the precision of the Norland XR-26 densitometer was tested by measuring 34 metacarpal bones and 34 proximal phalanges, each of them three times, from a single direction. The difference between the individual measurements of the first phalanges and of the metacarpal bones originating from the right or the left side of the same horse were not significant, nor did the age or breed have a significant effect on BMD or bone mineral content (BMC). However, both BMD and BMC are greater in the metacarpal bones than in the proximal phalanges and are higher in geldings than in mares or to stallions, while the BMD or BMC values of mares and stallions did not differ from each other significantly. These data point to the necessity of further BMD studies in a higher number of patients.
Resumo:
A simulation model adopting a health system perspective showed population-based screening with DXA, followed by alendronate treatment of persons with osteoporosis, or with anamnestic fracture and osteopenia, to be cost-effective in Swiss postmenopausal women from age 70, but not in men. INTRODUCTION: We assessed the cost-effectiveness of a population-based screen-and-treat strategy for osteoporosis (DXA followed by alendronate treatment if osteoporotic, or osteopenic in the presence of fracture), compared to no intervention, from the perspective of the Swiss health care system. METHODS: A published Markov model assessed by first-order Monte Carlo simulation was refined to reflect the diagnostic process and treatment effects. Women and men entered the model at age 50. Main screening ages were 65, 75, and 85 years. Age at bone densitometry was flexible for persons fracturing before the main screening age. Realistic assumptions were made with respect to persistence with intended 5 years of alendronate treatment. The main outcome was cost per quality-adjusted life year (QALY) gained. RESULTS: In women, costs per QALY were Swiss francs (CHF) 71,000, CHF 35,000, and CHF 28,000 for the main screening ages of 65, 75, and 85 years. The threshold of CHF 50,000 per QALY was reached between main screening ages 65 and 75 years. Population-based screening was not cost-effective in men. CONCLUSION: Population-based DXA screening, followed by alendronate treatment in the presence of osteoporosis, or of fracture and osteopenia, is a cost-effective option in Swiss postmenopausal women after age 70.
Resumo:
A new technique was evaluated to identify changes in bone metabolism directly at high sensitivity through isotopic labeling of bone Ca. Six women with low BMD were labeled with 41Ca up to 700 days and treated for 6 mo with risedronate. Effect of treatment on bone could be identified using 41Ca after 4-8 wk in each individual. INTRODUCTION: Isotopic labeling of bone using 41Ca, a long-living radiotracer, has been proposed as an alternative approach for measuring changes in bone metabolism to overcome current limitations of available techniques. After isotopic labeling of bone, changes in urinary 41Ca excretion reflect changes in bone Ca balance. The aim of this study was to validate this new technique against established measures. Changes in bone Ca balance were induced by giving a bisphosphonate. MATERIALS AND METHODS: Six postmenopausal women with diagnosed osteopenia/osteoporosis received a single oral dose of 100 nCi 41Ca for skeleton labeling. Urinary 41Ca/40Ca isotope ratios were monitored by accelerator mass spectrometry up to 700 days after the labeling process. Subjects received 35 mg risedronate per week for 6 mo. Effect of treatment was monitored using the 41Ca signal in urine and parallel measurements of BMD by DXA and biochemical markers of bone metabolism in urine and blood. RESULTS: Positive response to treatment was confirmed by BMD measurements, which increased for spine by +3.0% (p = 0.01) but not for hip. Bone formation markers decreased by -36% for bone alkaline phosphatase (BALP; p = 0.002) and -59% for procollagen type I propeptides (PINP; p = 0.001). Urinary deoxypyridinoline (DPD) and pyridinoline (PYD) were reduced by -21% (p = 0.019) and -23% (p = 0.009), respectively, whereas serum and urinary carboxy-terminal teleopeptides (CTXs) were reduced by -60% (p = 0.001) and -57.0% (p = 0.001), respectively. Changes in urinary 41Ca excretion paralleled findings for conventional techniques. The urinary 41Ca/40Ca isotope ratio was shifted by -47 +/- 10% by the intervention. Population pharmacokinetic analysis (NONMEM) of the 41Ca data using a linear three-compartment model showed that bisphosphonate treatment reduced Ca transfer rates between the slowly exchanging compartment (bone) and the intermediate fast exchanging compartment by 56% (95% CI: 45-58%). CONCLUSIONS: Isotopic labeling of bone using 41Ca can facilitate human trials in bone research by shortening of intervention periods, lowering subject numbers, and having easier conduct of cross-over studies compared with conventional techniques.
Resumo:
Mass screening for osteoporosis using DXA measurements at the spine and hip is presently not recommended by health authorities. Instead, risk factor questionnaires and peripheral bone measurements may facilitate the selection of women eligible for axial bone densitometry. The aim of this study was to validate a case finding strategy for postmenopausal women who would benefit most from subsequent DXA measurement by using phalangeal radiographic absorptiometry (RA) alone or in combination with risk factors in a general practice setting. The sensitivity and specificity of this strategy in detecting osteoporosis (T-score < or =2.5 SD at the spine and/or the hip) were compared with those of the current reimbursement criteria for DXA measurements in Switzerland. Four hundred and twenty-three postmenopausal women with one or more risk factors for osteoporosis were recruited by 90 primary care physicians who also performed the phalangeal RA measurements. All women underwent subsequent DXA measurement of the spine and the hip at the Osteoporosis Policlinic of the University Hospital of Berne. They were allocated to one of two groups depending on whether they matched with the Swiss reimbursement conditions for DXA measurement or not. Logistic regression models were used to predict the likelihood of osteoporosis versus "no osteoporosis" and to derive ROC curves for the various strategies. Differences in the areas under the ROC curves (AUC) were tested for significance. In women lacking reimbursement criteria, RA achieved a significantly larger AUC (0.81; 95% CI 0.72-0.89) than the risk factors associated with patients' age, height and weight (0.71; 95% C.I. 0.62-0.80). Furthermore, in this study, RA provided a better sensitivity and specificity in identifying women with underlying osteoporosis than the currently accepted criteria for reimbursement of DXA measurement. In the Swiss environment, RA is a valid case finding tool for patients with risk factors for osteoporosis, especially for those who do not qualify for DXA reimbursement.
Resumo:
Due to the inherent limitations of DXA, assessment of the biomechanical properties of vertebral bodies relies increasingly on CT-based finite element (FE) models, but these often use simplistic material behaviour and/or single loading cases. In this study, we applied a novel constitutive law for bone elasticity, plasticity and damage to FE models created from coarsened pQCT images of human vertebrae, and compared vertebral stiffness, strength and damage accumulation for axial compression, anterior flexion and a combination of these two cases. FE axial stiffness and strength correlated with experiments and were linearly related to flexion properties. In all loading modes, damage localised preferentially in the trabecular compartment. Damage for the combined loading was higher than cumulated damage produced by individual compression and flexion. In conclusion, this FE method predicts stiffness and strength of vertebral bodies from CT images with clinical resolution and provides insight into damage accumulation in various loading modes.
Resumo:
A nationwide survey was conducted in Switzerland to assess the quality level of osteoporosis management in patients aged 50 years or older presenting with a fragility fracture to the emergency ward of the participating hospitals. Eight centres recruited 4966 consecutive patients who presented with one or more fractures between 2004 and 2006. Of these, 3667 (2797 women, 73.8 years old and 870 men, 73.0 years old in average) were considered as having a fragility fracture and included in the survey. Included patients presented with a fracture of the upper limbs (30.7%), lower limbs (26.4%), axial skeleton (19.5%) or another localisation, including malleolar fractures (23.4%). Thirty-two percent reported one or more previous fractures during adulthood. Of the 2941 (80.2%) hospitalised women and men, only half returned home after discharge. During diagnostic workup, dual x-ray absorptiometry (DXA) measurement was performed in 31.4% of the patients only. Of those 46.0% had a T-score < or =-2.5 SD and 81.1% < or =-1.0 SD. Osteoporosis treatment rate increased from 26.3% before fracture to 46.9% after fracture in women and from 13.0% to 30.3% in men. However, only 24.0% of the women and 13.8% of the men were finally adequately treated with a bone active substance, generally an oral bisphosphonate, with or without calcium / vitamin D supplements. A positive history of previous fracture vs none increased the likelihood of getting treatment with a bone active substance (36.6 vs 17.9%, ? 18.7%, 95% CI 15.1 to 22.3, and 22.6 vs 9.9%, ? 12.7%, CI 7.3 to 18.5, in women and men, respectively). In Switzerland, osteoporosis remains underdiagnosed and undertreated in patients aged 50 years and older presenting with a fragility fracture.